cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 92 results. Next

A353850 Number of integer compositions of n with all distinct run-sums.

Original entry on oeis.org

1, 1, 2, 4, 5, 12, 24, 38, 52, 111, 218, 286, 520, 792, 1358, 2628, 4155, 5508, 9246, 13182, 23480, 45150, 54540, 94986, 146016, 213725, 301104, 478586, 851506, 1302234, 1775482, 2696942, 3746894, 6077784, 8194466, 12638334, 21763463, 28423976, 45309850, 62955524, 94345474
Offset: 0

Views

Author

Gus Wiseman, May 31 2022

Keywords

Comments

Every sequence can be uniquely split into a sequence of non-overlapping runs. For example, the runs of (2,2,1,1,1,3,2,2) are ((2,2),(1,1,1),(3),(2,2)), with sums (4,3,3,4).

Examples

			The a(0) = 1 through a(5) = 12 compositions:
  ()  (1)  (2)   (3)    (4)     (5)
           (11)  (12)   (13)    (14)
                 (21)   (22)    (23)
                 (111)  (31)    (32)
                        (1111)  (41)
                                (113)
                                (122)
                                (221)
                                (311)
                                (1112)
                                (2111)
                                (11111)
For n=4, (211) is invalid because the two runs (2) and (11) have the same sum. - _Joseph Likar_, Aug 04 2023
		

Crossrefs

For distinct parts instead of run-sums we have A032020.
For distinct multiplicities instead of run-sums we have A242882.
For distinct run-lengths instead of run-sums we have A329739, ptns A098859.
For runs instead of run-sums we have A351013.
For partitions we have A353837, ranked by A353838 (complement A353839).
For equal instead of distinct run-sums we have A353851, ptns A304442.
These compositions are ranked by A353852.
The weak version (rucksack compositions) is A354580, ranked by A354581.
A003242 counts anti-run compositions, ranked by A333489.
A005811 counts runs in binary expansion.
A011782 counts compositions.
A175413 lists numbers whose binary expansion has all distinct runs.
A351014 counts distinct runs in standard compositions, firsts A351015.
A353847 gives composition run-sum transformation.
A353929 counts distinct runs in binary expansion, firsts A353930.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], UnsameQ@@Total/@Split[#]&]],{n,0,15}]

Extensions

Terms a(21) and onwards from Joseph Likar, Aug 04 2023

A351013 Number of integer compositions of n with all distinct runs.

Original entry on oeis.org

1, 1, 2, 4, 7, 14, 26, 48, 88, 161, 294, 512, 970, 1634, 2954, 5156, 9119, 15618, 27354, 46674, 80130, 138078, 232286, 394966, 665552, 1123231, 1869714, 3146410, 5186556, 8620936, 14324366, 23529274, 38564554, 63246744, 103578914, 167860584, 274465845
Offset: 0

Views

Author

Gus Wiseman, Feb 09 2022

Keywords

Examples

			The a(1) = 1 through a(5) = 14 compositions:
  (1)  (2)    (3)      (4)        (5)
       (1,1)  (1,2)    (1,3)      (1,4)
              (2,1)    (2,2)      (2,3)
              (1,1,1)  (3,1)      (3,2)
                       (1,1,2)    (4,1)
                       (2,1,1)    (1,1,3)
                       (1,1,1,1)  (1,2,2)
                                  (2,2,1)
                                  (3,1,1)
                                  (1,1,1,2)
                                  (1,1,2,1)
                                  (1,2,1,1)
                                  (2,1,1,1)
                                  (1,1,1,1,1)
For example, the composition c = (3,1,1,1,1,2,1,1,3,4,1,1) has runs (3), (1,1,1,1), (2), (1,1), (3), (4), (1,1), and since (3) and (1,1) both appear twice, c is not counted under a(20).
		

Crossrefs

The version for run-lengths instead of runs is A329739, normal A329740.
These compositions are ranked by A351290, complement A351291.
A000005 counts constant compositions, ranked by A272919.
A005811 counts runs in binary expansion.
A011782 counts integer compositions.
A059966 counts binary Lyndon compositions, necklaces A008965, aperiodic A000740.
A116608 counts compositions by number of distinct parts.
A238130 and A238279 count compositions by number of runs.
A242882 counts compositions with distinct multiplicities.
A297770 counts distinct runs in binary expansion.
A325545 counts compositions with distinct differences.
A329744 counts compositions by runs-resistance.
A351014 counts distinct runs in standard compositions.
Counting words with all distinct runs:
- A351016 = binary words, for run-lengths A351017.
- A351018 = binary expansions, for run-lengths A032020, ranked by A175413.
- A351200 = patterns, for run-lengths A351292.
- A351202 = permutations of prime factors.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],UnsameQ@@Split[#]&]],{n,0,10}]
  • PARI
    \\ here LahI is A111596 as row polynomials.
    LahI(n,y) = {sum(k=1, n, y^k*(-1)^(n-k)*(n!/k!)*binomial(n-1, k-1))}
    S(n) = {my(p=prod(k=1, n, 1 + y*x^k + O(x*x^n))); 1 + sum(i=1, (sqrtint(8*n+1)-1)\2, polcoef(p,i,y)*LahI(i,y))}
    seq(n)={my(q=S(n)); [subst(serlaplace(p),y,1) | p<-Vec(prod(k=1, n, subst(q + O(x*x^(n\k)), x, x^k)))]} \\ Andrew Howroyd, Feb 12 2022

Extensions

Terms a(26) and beyond from Andrew Howroyd, Feb 12 2022

A175413 Those positive integers n that when written in binary, the lengths of the runs of 1 are distinct and the lengths of the runs of 0's are distinct.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 8, 11, 12, 13, 14, 15, 16, 19, 23, 24, 25, 28, 29, 30, 31, 32, 35, 38, 39, 44, 47, 48, 49, 50, 52, 55, 56, 57, 59, 60, 61, 62, 63, 64, 67, 70, 71, 78, 79, 88, 92, 95, 96, 97, 98, 103, 104, 111, 112, 113, 114, 115, 116, 120, 121, 123, 124, 125
Offset: 1

Views

Author

Leroy Quet, May 07 2010

Keywords

Comments

A044813 contains those positive integers that when written in binary, have all run-lengths (of both 0's and 1's) distinct.
A175414 contains those positive integers in A175413 that are not in A044813. (A175414 contains those positive integers that when written in binary, at least one run of 0's is the same length as one run of 1's, even though all run of 0 are of distinct length and all runs of 1's are of distinct length.)
Also numbers whose binary expansion has all distinct runs (not necessarily run-lengths). - Gus Wiseman, Feb 21 2022

Crossrefs

Runs in binary expansion are counted by A005811, distinct A297770.
The complement is A351205.
The version for standard compositions is A351290, complement A351291.
A000120 counts binary weight.
A242882 counts compositions with distinct multiplicities.
A318928 gives runs-resistance of binary expansion.
A325545 counts compositions with distinct differences.
A333489 ranks anti-runs, complement A348612, counted by A003242.
A334028 counts distinct parts in standard compositions.
A351014 counts distinct runs in standard compositions.
Counting words with all distinct runs:
- A351013 = compositions, for run-lengths A329739.
- A351016 = binary words, for run-lengths A351017.
- A351018 = binary expansions, for run-lengths A032020.
- A351200 = patterns, for run-lengths A351292.
- A351202 = permutations of prime factors.

Programs

  • Maple
    q:= proc(n) uses ListTools; (l-> is(nops(l)=add(
          nops(i), i={Split(`=`, l, 1)}) +add(
          nops(i), i={Split(`=`, l, 0)})))(Bits[Split](n))
        end:
    select(q, [$1..200])[];  # Alois P. Heinz, Mar 14 2022
  • Mathematica
    f[n_] := And@@Unequal@@@Transpose[Partition[Length/@Split[IntegerDigits[n, 2]], 2, 2, {1,1}, 0]]; Select[Range[125], f] (* Ray Chandler, Oct 21 2011 *)
    Select[Range[0,100],UnsameQ@@Split[IntegerDigits[#,2]]&] (* Gus Wiseman, Feb 21 2022 *)
  • Python
    from itertools import groupby, product
    def ok(n):
        runs = [(k, len(list(g))) for k, g in groupby(bin(n)[2:])]
        return len(runs) == len(set(runs))
    print([k for k in range(1, 125) if ok(k)]) # Michael S. Branicky, Feb 22 2022

Extensions

Extended by Ray Chandler, Oct 21 2011

A353852 Numbers k such that the k-th composition in standard order (row k of A066099) has all distinct run-sums.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 16, 17, 18, 19, 20, 21, 23, 24, 26, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 47, 48, 50, 51, 52, 55, 56, 57, 58, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 79, 80, 81, 84, 85, 86, 87, 88
Offset: 0

Views

Author

Gus Wiseman, May 31 2022

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
Every sequence can be uniquely split into a sequence of non-overlapping runs. For example, the runs of (2,2,1,1,1,3,2,2) are ((2,2),(1,1,1),(3),(2,2)), with sums (4,3,3,4).

Examples

			The terms together with their binary expansions and corresponding compositions begin:
   0:        0  ()
   1:        1  (1)
   2:       10  (2)
   3:       11  (1,1)
   4:      100  (3)
   5:      101  (2,1)
   6:      110  (1,2)
   7:      111  (1,1,1)
   8:     1000  (4)
   9:     1001  (3,1)
  10:     1010  (2,2)
  12:     1100  (1,3)
  15:     1111  (1,1,1,1)
  16:    10000  (5)
  17:    10001  (4,1)
  18:    10010  (3,2)
  19:    10011  (3,1,1)
  20:    10100  (2,3)
  21:    10101  (2,2,1)
  23:    10111  (2,1,1,1)
		

Crossrefs

The version for runs in binary expansion is A175413.
The version for parts instead of run-sums is A233564, counted A032020.
The version for run-lengths instead of run-sums is A351596, counted A329739.
The version for runs instead of run-sums is A351290, counted by A351013.
The version for partitions is A353838, counted A353837, complement A353839.
The equal instead of distinct version is A353848, counted by A353851.
These compositions are counted by A353850.
The weak version (rucksack compositions) is A354581, counted by A354580.
A003242 counts anti-run compositions, ranked by A333489.
A005811 counts runs in binary expansion.
A011782 counts compositions.
A242882 counts composition with distinct multiplicities, partitions A098859.
A304442 counts partitions with all equal run-sums.
A351014 counts distinct runs in standard compositions, firsts A351015.
A353853-A353859 pertain to composition run-sum trajectory.
A353864 counts rucksack partitions, perfect A353865.
A353929 counts distinct runs in binary expansion, firsts A353930.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],UnsameQ@@Total/@Split[stc[#]]&]

A357136 Triangle read by rows where T(n,k) is the number of integer compositions of n with alternating sum k = 0..n. Part of the full triangle A097805.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 0, 2, 0, 1, 3, 0, 3, 0, 1, 0, 6, 0, 4, 0, 1, 10, 0, 10, 0, 5, 0, 1, 0, 20, 0, 15, 0, 6, 0, 1, 35, 0, 35, 0, 21, 0, 7, 0, 1, 0, 70, 0, 56, 0, 28, 0, 8, 0, 1, 126, 0, 126, 0, 84, 0, 36, 0, 9, 0, 1, 0, 252, 0, 210, 0, 120, 0, 45, 0, 10, 0, 1
Offset: 0

Views

Author

Gus Wiseman, Sep 30 2022

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n.
The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i.

Examples

			Triangle begins:
    1
    0   1
    1   0   1
    0   2   0   1
    3   0   3   0   1
    0   6   0   4   0   1
   10   0  10   0   5   0   1
    0  20   0  15   0   6   0   1
   35   0  35   0  21   0   7   0   1
    0  70   0  56   0  28   0   8   0   1
  126   0 126   0  84   0  36   0   9   0   1
    0 252   0 210   0 120   0  45   0  10   0   1
  462   0 462   0 330   0 165   0  55   0  11   0   1
    0 924   0 792   0 495   0 220   0  66   0  12   0   1
For example, row n = 5 counts the following compositions:
  .  (32)     .  (41)   .  (5)
     (122)       (113)
     (221)       (212)
     (1121)      (311)
     (2111)
     (11111)
		

Crossrefs

The full triangle counting compositions by alternating sum is A097805.
The version for partitions is A103919, full triangle A344651.
This is the right-half of even-indexed rows of A260492.
The triangle without top row and left column is A108044.
Ranking and counting compositions:
- product = sum: A335404, counted by A335405.
- sum = twice alternating sum: A348614, counted by A262977.
- length = alternating sum: A357184, counted by A357182.
- length = absolute value of alternating sum: A357185, counted by A357183.
A003242 counts anti-run compositions, ranked by A333489.
A011782 counts compositions.
A025047 counts alternating compositions, ranked by A345167.
A032020 counts strict compositions, ranked by A233564.
A124754 gives alternating sums of standard compositions.
A238279 counts compositions by sum and number of maximal runs.

Programs

  • Mathematica
    Prepend[Table[If[EvenQ[nn],Prepend[#,0],#]&[Riffle[Table[Binomial[nn,k],{k,Floor[nn/2],nn}],0]],{nn,0,10}],{1}]

A351202 Number of permutations of the multiset of prime factors of n (or ordered prime factorizations of n) with all distinct runs.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 4, 1, 2, 1, 2, 1, 6, 1, 1, 2, 2, 2, 2, 1, 2, 2, 4, 1, 6, 1, 2, 2, 2, 1, 4, 1, 2, 2, 2, 1, 4, 2, 4, 2, 2, 1, 6, 1, 2, 2, 1, 2, 6, 1, 2, 2, 6, 1, 4, 1, 2, 2, 2, 2, 6, 1, 4, 1, 2, 1, 6, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Feb 13 2022

Keywords

Examples

			The a(36) = 2 permutations are (1,1,2,2), (2,2,1,1). Missing are: (1,2,1,2), (1,2,2,1), (2,1,1,2), (2,1,2,1). Here we use prime indices instead of factors.
		

Crossrefs

The maximum number of possible permutations is A008480.
Positions less than A008480 are A351201.
A005811 counts runs in binary expansion.
A044813 lists numbers whose binary expansion has distinct run-lengths.
A056239 adds up prime indices, row sums of A112798.
A098859 counts partitions with distinct multiplicities, ordered A242882.
A283353 counts normal multisets with a permutation without distinct runs.
A297770 counts distinct runs in binary expansion.
A351014 counts distinct runs in standard compositions, firsts A351015.
A351204 = partitions whose perms. have distinct runs, complement A351203.
Counting words with all distinct runs:
- A351013 = compositions, for run-lengths A329739, ranked by A351290.
- A351016 = binary words, for run-lengths A351017.
- A351018 = binary expansions, for run-lengths A032020, ranked by A175413.
- A351200 = patterns, for run-lengths A351292.

Programs

  • Mathematica
    Table[Length[Select[Permutations[Join@@ ConstantArray@@@FactorInteger[n]],UnsameQ@@Split[#]&]],{n,100}]

A353851 Number of integer compositions of n with all equal run-sums.

Original entry on oeis.org

1, 1, 2, 2, 5, 2, 8, 2, 12, 5, 8, 2, 34, 2, 8, 8, 43, 2, 52, 2, 70, 8, 8, 2, 282, 5, 8, 18, 214, 2, 386, 2, 520, 8, 8, 8, 1957, 2, 8, 8, 2010, 2, 2978, 2, 3094, 94, 8, 2, 16764, 5, 340, 8, 12310, 2, 26514, 8, 27642, 8, 8, 2, 132938, 2, 8, 238, 107411, 8, 236258
Offset: 0

Views

Author

Gus Wiseman, May 31 2022

Keywords

Comments

Every sequence can be uniquely split into a sequence of non-overlapping runs. For example, the runs of (2,2,1,1,1,3,2,2) are ((2,2),(1,1,1),(3),(2,2)), with sums (4,3,3,4).

Examples

			The a(0) = 1 through a(8) = 12 compositions:
  ()  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
           (11)  (111)  (22)    (11111)  (33)      (1111111)  (44)
                        (112)            (222)                (224)
                        (211)            (1113)               (422)
                        (1111)           (2112)               (2222)
                                         (3111)               (11114)
                                         (11211)              (41111)
                                         (111111)             (111122)
                                                              (112112)
                                                              (211211)
                                                              (221111)
                                                              (11111111)
For example:
  (1,1,2,1,1) has run-sums (2,2,2) so is counted under a(6).
  (4,1,1,1,1,2,2) has run-sums (4,4,4) so is counted under a(12).
  (3,3,2,2,2) has run-sums (6,6) so is counted under a(12).
		

Crossrefs

The version for parts or runs instead of run-sums is A000005.
The version for multiplicities instead of run-sums is A098504.
All parts are divisors of n, see A100346.
The version for partitions is A304442, ranked by A353833.
The version for run-lengths instead of run-sums is A329738, ptns A047966.
These compositions are ranked by A353848.
The distinct instead of equal version is A353850.
A003242 counts anti-run compositions, ranked by A333489.
A005811 counts runs in binary expansion.
A011782 counts compositions.
A353847 represents the composition run-sum transformation.
For distinct instead of equal run-sums: A032020, A098859, A242882, A329739, A351013, A353837, ranked by A353838 (complement A353839), A353852, A354580, ranked by A354581.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@ IntegerPartitions[n],SameQ@@Total/@Split[#]&]],{n,0,15}]
  • PARI
    a(n) = {if(n <=1, return(1)); my(d = divisors(n), res = 0); for(i = 1, #d, nd = numdiv(d[i]); res+=(nd*(nd-1)^(n/d[i]-1)) ); res } \\ David A. Corneth, Jun 02 2022

Formula

From David A. Corneth, Jun 02 2022 (Start)
a(p) = 2 for prime p.
a(p*q) = 8 for distinct primes p and q (Cf. A006881).
a(n) = Sum_{d|n} tau(d)*(tau(d)-1) ^ (n/d - 1) where tau = A000005. (End)

Extensions

More terms from David A. Corneth, Jun 02 2022

A384175 Number of subsets of {1..n} with all distinct lengths of maximal runs (increasing by 1).

Original entry on oeis.org

1, 2, 4, 7, 13, 24, 44, 77, 135, 236, 412, 713, 1215, 2048, 3434, 5739, 9559, 15850, 26086, 42605, 69133, 111634, 179602, 288069, 460553, 733370, 1162356, 1833371, 2878621, 4501856, 7016844, 10905449, 16904399, 26132460, 40279108, 61885621, 94766071, 144637928
Offset: 0

Views

Author

Gus Wiseman, Jun 16 2025

Keywords

Examples

			The subset {2,3,5,6,7,9} has maximal runs ((2,3),(5,6,7),(9)), with lengths (2,3,1), so is counted under a(9).
The a(0) = 1 through a(4) = 13 subsets:
  {}  {}   {}     {}       {}
      {1}  {1}    {1}      {1}
           {2}    {2}      {2}
           {1,2}  {3}      {3}
                  {1,2}    {4}
                  {2,3}    {1,2}
                  {1,2,3}  {2,3}
                           {3,4}
                           {1,2,3}
                           {1,2,4}
                           {1,3,4}
                           {2,3,4}
                           {1,2,3,4}
		

Crossrefs

For equal instead of distinct lengths we have A243815.
These subsets are ranked by A328592.
The complement is counted by A384176.
For anti-runs instead of runs we have A384177, ranks A384879.
For partitions instead of subsets we have A384884, A384178, A384886, A384880.
For permutations instead of subsets we have A384891, equal instead of distinct A384892.
A034839 counts subsets by number of maximal runs, for strict partitions A116674.
A098859 counts Wilf partitions (distinct multiplicities), complement A336866.
A384893 counts subsets by number of maximal anti-runs, for partitions A268193, A384905.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],UnsameQ@@Length/@Split[#,#2==#1+1&]&]],{n,0,10}]
  • PARI
    lista(n)={my(o=(1-x^(n+1))/(1-x)*O(y^(n+2)),p=prod(i=1,n,1+o+x*y^(i+1)/(1-y),1/(1-y)));p=subst(serlaplace(p),x,1);Vec(p-1)} \\ Christian Sievers, Jun 18 2025

Extensions

a(21) and beyond from Christian Sievers, Jun 18 2025

A333628 Runs-resistance of the n-th composition in standard order. Number of steps taking run-lengths to reduce the n-th composition in standard order to a singleton.

Original entry on oeis.org

0, 0, 1, 0, 2, 2, 1, 0, 2, 1, 3, 2, 2, 3, 1, 0, 2, 2, 3, 2, 3, 2, 3, 2, 2, 3, 4, 3, 4, 3, 1, 0, 2, 2, 3, 1, 2, 2, 3, 2, 2, 1, 2, 2, 2, 3, 3, 2, 2, 2, 4, 2, 3, 2, 4, 3, 4, 2, 3, 3, 4, 3, 1, 0, 2, 2, 3, 2, 2, 2, 3, 2, 3, 3, 4, 2, 2, 3, 3, 2, 2, 2, 4, 3, 3, 4
Offset: 1

Views

Author

Gus Wiseman, Mar 31 2020

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again.
For the operation of taking the sequence of run-lengths of a finite sequence, runs-resistance is defined as the number of applications required to reach a singleton.

Examples

			Starting with 13789 and repeatedly applying A333627 gives: 13789 -> 859 -> 110 -> 29 -> 11 -> 6 -> 3 -> 2, corresponding to the compositions: (1,2,2,1,1,2,1,1,2,1) -> (1,2,2,1,2,1,1) -> (1,2,1,1,2) -> (1,1,2,1) -> (2,1,1) -> (1,2) -> (1,1) -> (2), so a(13789) = 7.
		

Crossrefs

Number of times applying A333627 to reach a power of 2, starting with n.
Positions of first appearances are A333629.
All of the following pertain to compositions in standard order (A066099):
- The length is A000120.
- The partial sums from the right are A048793.
- The sum is A070939.
- Adjacent equal pairs are counted by A124762.
- Equal runs are counted by A124767.
- Strict compositions are ranked by A233564.
- The partial sums from the left are A272020.
- Constant compositions are ranked by A272919.
- Normal compositions are ranked by A333217.
- Heinz number is A333219.
- Anti-runs are counted by A333381.
- Adjacent unequal pairs are counted by A333382.
- First appearances for specified run-lengths are A333630.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    runsres[q_]:=Length[NestWhileList[Length/@Split[#]&,q,Length[#]>1&]]-1;
    Table[runsres[stc[n]],{n,100}]

A329746 Triangle read by rows where T(n,k) is the number of integer partitions of n > 0 with runs-resistance k, 0 <= k <= n - 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 0, 1, 3, 4, 3, 0, 0, 1, 1, 4, 8, 1, 0, 0, 1, 3, 6, 10, 2, 0, 0, 0, 1, 2, 8, 13, 6, 0, 0, 0, 0, 1, 3, 11, 20, 7, 0, 0, 0, 0, 0, 1, 1, 11, 29, 14, 0, 0, 0, 0, 0, 0, 1, 5, 19, 31, 20, 1, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Nov 21 2019

Keywords

Comments

For the operation of taking the sequence of run-lengths of a finite sequence, runs-resistance is defined as the number of applications required to reach a singleton.

Examples

			Triangle begins:
  1
  1  1
  1  1  1
  1  2  1  1
  1  1  2  3  0
  1  3  4  3  0  0
  1  1  4  8  1  0  0
  1  3  6 10  2  0  0  0
  1  2  8 13  6  0  0  0  0
  1  3 11 20  7  0  0  0  0  0
  1  1 11 29 14  0  0  0  0  0  0
  1  5 19 31 20  1  0  0  0  0  0  0
  1  1 17 50 30  2  0  0  0  0  0  0  0
  1  3 25 64 37  5  0  0  0  0  0  0  0  0
  1  3 29 74 62  7  0  0  0  0  0  0  0  0  0
Row n = 8 counts the following partitions:
  (8)  (44)        (53)    (332)      (4211)
       (2222)      (62)    (422)      (32111)
       (11111111)  (71)    (611)
                   (431)   (3221)
                   (521)   (5111)
                   (3311)  (22211)
                           (41111)
                           (221111)
                           (311111)
                           (2111111)
		

Crossrefs

Row sums are A000041.
Column k = 1 is A032741.
Column k = 2 is A329745.
A similar invariant is frequency depth; see A323014, A325280.
The version for compositions is A329744.
The version for binary words is A329767.

Programs

  • Mathematica
    runsres[q_]:=Length[NestWhileList[Length/@Split[#]&,q,Length[#]>1&]]-1;
    Table[Length[Select[IntegerPartitions[n],runsres[#]==k&]],{n,10},{k,0,n-1}]
  • PARI
    \\ rr(p) gives runs resistance of partition.
    rr(p)={my(r=0); while(#p > 1, my(L=List(), k=0); for(i=1, #p, if(i==#p||p[i]<>p[i+1], listput(L, i-k); k=i)); p=Vec(L); r++); r}
    row(n)={my(v=vector(n)); forpart(p=n, v[1+rr(Vec(p))]++); v}
    { for(n=1, 10, print(row(n))) } \\ Andrew Howroyd, Jan 19 2023
Previous Showing 11-20 of 92 results. Next