cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A243835 Number A(n,k) of Dyck paths of semilength n having exactly nine (possibly overlapping) occurrences of the consecutive step pattern given by the binary expansion of k, where 1=U=(1,1) and 0=D=(1,-1); square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4862, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4862, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 45, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 825, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 55, 9075, 0, 0
Offset: 0

Views

Author

Alois P. Heinz, Jun 11 2014

Keywords

Examples

			Square array A(n,k) begins:
     0,    0,   0,  0, 0,  0, 0, 0, 0, 0, 0, 0, ...
     0,    0,   0,  0, 0,  0, 0, 0, 0, 0, 0, 0, ...
     0,    0,   0,  0, 0,  0, 0, 0, 0, 0, 0, 0, ...
     0,    0,   0,  0, 0,  0, 0, 0, 0, 0, 0, 0, ...
     0,    0,   0,  0, 0,  0, 0, 0, 0, 0, 0, 0, ...
     0,    0,   0,  0, 0,  0, 0, 0, 0, 0, 0, 0, ...
     0,    0,   0,  0, 0,  0, 0, 0, 0, 0, 0, 0, ...
     0,    0,   0,  0, 0,  0, 0, 0, 0, 0, 0, 0, ...
     0,    0,   0,  0, 0,  0, 0, 0, 0, 0, 0, 0, ...
  4862, 4862,   1,  0, 0,  0, 0, 0, 0, 0, 0, 0, ...
     0,    0,  45,  1, 0,  1, 0, 0, 0, 0, 1, 0, ...
     0,    0, 825, 55, 0, 10, 0, 1, 0, 0, 1, 0, ...
		

Crossrefs

Main diagonal gives A243778 or column k=9 of A243752.

A243836 Number A(n,k) of Dyck paths of semilength n having exactly ten (possibly overlapping) occurrences of the consecutive step pattern given by the binary expansion of k, where 1=U=(1,1) and 0=D=(1,-1); square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 16796, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 16796, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 55, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1210, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 66, 15730, 0, 0
Offset: 0

Views

Author

Alois P. Heinz, Jun 11 2014

Keywords

Examples

			Square array A(n,k) begins:
      0,     0,  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
      0,     0,  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
      0,     0,  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
      0,     0,  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
      0,     0,  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
      0,     0,  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
      0,     0,  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
      0,     0,  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
      0,     0,  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
      0,     0,  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
  16796, 16796,  1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
      0,     0, 55, 1, 0, 1, 0, 0, 0, 0, 1, 0, ...
		

Crossrefs

Main diagonal gives A243779 or column k=10 of A243752.

A243881 Number T(n,k) of Dyck paths of semilength n having exactly k (possibly overlapping) occurrences of the consecutive steps UDUUUDDDUD (with U=(1,1), D=(1,-1)); triangle T(n,k), n>=0, 0<=k<=max(0,floor((n-1)/4)), read by rows.

Original entry on oeis.org

1, 1, 2, 5, 14, 41, 1, 129, 3, 419, 10, 1395, 35, 4737, 124, 1, 16338, 454, 4, 57086, 1684, 16, 201642, 6305, 65, 718855, 23781, 263, 1, 2583149, 90209, 1077, 5, 9346594, 343809, 4419, 23, 34023934, 1315499, 18132, 105, 124519805, 5050144, 74368, 472, 1
Offset: 0

Views

Author

Alois P. Heinz, Jun 13 2014

Keywords

Comments

UDUUUDDDUD is the only Dyck path of semilength 5 that contains all eight consecutive step patterns of length 3.

Examples

			Triangle T(n,k) begins:
:  0 :        1;
:  1 :        1;
:  2 :        2;
:  3 :        5;
:  4 :       14;
:  5 :       41,       1;
:  6 :      129,       3;
:  7 :      419,      10;
:  8 :     1395,      35;
:  9 :     4737,     124,     1;
: 10 :    16338,     454,     4;
: 11 :    57086,    1684,    16;
: 12 :   201642,    6305,    65;
: 13 :   718855,   23781,   263,   1;
: 14 :  2583149,   90209,  1077,   5;
: 15 :  9346594,  343809,  4419,  23;
: 16 : 34023934, 1315499, 18132, 105;
		

Crossrefs

Row sums give A000108.
T(738,k) = A243752(738,k).
T(n,0) = A243753(n,738).
Cf. A243882.

Programs

  • Maple
    b:= proc(x, y, t) option remember; `if`(y<0 or y>x, 0, `if`(x=0, 1,
         expand(b(x-1, y+1, [2, 2, 4, 5, 6, 2, 4, 2, 10, 2][t])+`if`(t=10,
          z, 1)*b(x-1, y-1, [1, 3, 1, 3, 3, 7, 8, 9, 1, 3][t]))))
        end:
    T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(2*n, 0, 1)):
    seq(T(n), n=0..20);
  • Mathematica
    b[x_, y_, t_] := b[x, y, t] = If[y<0 || y>x, 0, If[x==0, 1, Expand[b[x-1, y+1, {2, 2, 4, 5, 6, 2, 4, 2, 10, 2}[[t]]] + If[t==10, z, 1]*b[x-1, y-1, {1, 3, 1, 3, 3, 7, 8, 9, 1, 3}[[t]]]]]]; T[n_] := Function[{p}, Table[Coefficient[p, z, i], {i, 0, Exponent[p, z]}]][b[2*n, 0, 1]]; Table[T[n], {n, 0, 20}] // Flatten (* Jean-François Alcover, Mar 31 2015, after Alois P. Heinz *)

A094507 Triangle read by rows: T(n,k) is number of Dyck paths of semilength n and having k UDUD's (here U=(1,1), D=(1,-1)).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 7, 5, 1, 1, 19, 14, 7, 1, 1, 53, 46, 22, 9, 1, 1, 153, 150, 82, 31, 11, 1, 1, 453, 495, 299, 127, 41, 13, 1, 1, 1367, 1651, 1087, 507, 181, 52, 15, 1, 1, 4191, 5539, 3967, 1991, 781, 244, 64, 17, 1, 1, 13015, 18692, 14442, 7824, 3271, 1128, 316, 77, 19
Offset: 0

Views

Author

Emeric Deutsch, Jun 05 2004

Keywords

Comments

Column k=0 is A078481.
Column k=1 is A244236.
Row sums are the Catalan numbers (A000108).

Examples

			T(3,0) = 3 because UDUUDD, UUDDUD and UUUDDD are the only Dyck paths of semilength 3 and having no UDUD in them.
Triangle begins:
     1;
     1;
     1,    1;
     3,    1,    1;
     7,    5,    1,    1;
    19,   14,    7,    1,   1;
    53,   46,   22,    9,   1,   1;
   153,  150,   82,   31,  11,   1,  1;
   453,  495,  299,  127,  41,  13,  1,  1;
  1367, 1651, 1087,  507, 181,  52, 15,  1, 1;
  4191, 5539, 3967, 1991, 781, 244, 64, 17, 1, 1;
		

Crossrefs

Cf. A078481, A000108, A102405 (the same for DUDU), A243752, A243753, A244236.
T(2n,n) gives A304361.

Programs

  • Maple
    b:= proc(x, y, t) option remember; `if`(y<0 or y>x, 0,
         `if`(x=0, 1, expand(b(x-1, y+1, [2, 2, 4, 2][t])
          +b(x-1, y-1, [1, 3, 1, 3][t])*`if`(t=4, z, 1))))
        end:
    T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(2*n, 0, 1)):
    seq(T(n), n=0..15);  # Alois P. Heinz, Jun 02 2014
  • Mathematica
    b[x_, y_, t_] := b[x, y, t] = If[y<0 || y>x, 0, If[x == 0, 1, Expand[b[x-1, y+1, {2, 2, 4, 2}[[t]]] + b[x-1, y-1, {1, 3, 1, 3}[[t]]]*If[t == 4, z, 1]]]]; T[n_] := Function[{p}, Table[Coefficient[p, z, i], {i, 0, Exponent[p, z]}]][b[2*n, 0, 1] ]; Table[T[n], {n, 0, 15}] // Flatten (* Jean-François Alcover, Apr 29 2015, after Alois P. Heinz *)

Formula

G.f.: G=G(t, z) satisfies the equation z(1+z-tz)G^2-(1+z+z^2-tz-tz^2)G+1+z-tz=0.

A092107 Triangle read by rows: T(n,k) is the number of Dyck paths of semilength n having exactly k UUU's (triple rises) where U=(1,1). Rows have 1,1,1,2,3,4,5,... entries, respectively.

Original entry on oeis.org

1, 1, 2, 4, 1, 9, 4, 1, 21, 15, 5, 1, 51, 50, 24, 6, 1, 127, 161, 98, 35, 7, 1, 323, 504, 378, 168, 48, 8, 1, 835, 1554, 1386, 750, 264, 63, 9, 1, 2188, 4740, 4920, 3132, 1335, 390, 80, 10, 1, 5798, 14355, 17028, 12507, 6237, 2200, 550, 99, 11, 1, 15511, 43252, 57816
Offset: 0

Views

Author

Emeric Deutsch, Mar 29 2004

Keywords

Comments

Column 0 gives the Motzkin numbers (A001006), column 1 gives A014532. Row sums are the Catalan numbers (A000108).
Equal to A171380*B (without the zeros), B = A007318. - Philippe Deléham, Dec 10 2009

Examples

			T(5,2) = 5 because we have (U[UU)U]DUDDDD, (U[UU)U]DDUDDD, (U[UU)U]DDDUDD, (U[UU)U]DDDDUD and UD(U[UU)U]DDDD, where U=(1,1), D=(1,-1); the triple rises are shown between parentheses.
[1],[1],[2],[4, 1],[9, 4, 1],[21, 15, 5, 1],[51, 50, 24, 6, 1],[127, 161, 98, 35, 7, 1]
Triangle starts:
     1;
     1;
     2;
     4,    1;
     9,    4,    1;
    21,   15,    5,    1;
    51,   50,   24,    6,    1;
   127,  161,   98,   35,    7,    1;
   323,  504,  378,  168,   48,    8,    1;
   835, 1554, 1386,  750,  264,   63,    9,    1;
  2188, 4740, 4920, 3132, 1335,  390,   80,   10,    1;
  ...
		

Crossrefs

Programs

  • Maple
    b:= proc(x, y, t) option remember; `if`(y>x or y<0, 0,
          `if`(x=0, 1, expand(b(x-1, y-1, min(t+1,2))*
          `if`(t=2, z, 1) +b(x-1, y+1, 0))))
        end:
    T:= n->(p->seq(coeff(p, z, i), i=0..degree(p)))(b(2*n, 0, 0)):
    seq(T(n), n=0..12);  # Alois P. Heinz, Mar 11 2014
  • Mathematica
    b[x_, y_, t_] := b[x, y, t] = If[y>x || y<0, 0, If[x == 0, 1, Expand[b[x-1, y-1, Min[t+1, 2]]*If[t == 2, z, 1] + b[x-1, y+1, 0]]]]; T[n_] := Function[{p}, Table[ Coefficient[p, z, i], {i, 0, Exponent[p, z]}]][b[2*n, 0, 0]]; Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Apr 29 2015, after Alois P. Heinz *)

Formula

G.f.: G(t, z) satisfies z(t+z-tz)G^2 - (1-z+tz)G + 1 = 0.
Sum_{k=0..n} T(n,k)*x^k = A001405(n), A001006(n), A000108(n), A033321(n) for x = -1, 0, 1, 2 respectively. - Philippe Deléham, Dec 10 2009

A243412 Number of Dyck paths of semilength n avoiding the consecutive steps UDUUDU (with U=(1,1), D=(1,-1)).

Original entry on oeis.org

1, 1, 2, 5, 13, 37, 112, 352, 1136, 3742, 12529, 42513, 145868, 505234, 1764157, 6203370, 21947490, 78072209, 279062937, 1001803617, 3610366030, 13057141261, 47373444827, 172381857939, 628944880851, 2300410562946, 8433110899963, 30980398420830, 114034887644860
Offset: 0

Views

Author

Alois P. Heinz, Jun 04 2014

Keywords

Crossrefs

Column k=0 of A243366.
Column k=45 of A243753.

Formula

Recurrence: (n+1)*(n+2)*(817*n^7 - 24387*n^6 + 285094*n^5 - 1647261*n^4 + 4787137*n^3 - 5628540*n^2 - 1552284*n + 6122952)*a(n) = (n+1)*(1634*n^8 - 47957*n^7 + 542786*n^6 - 2900786*n^5 + 6449435*n^4 + 3292426*n^3 - 41693904*n^2 + 63681552*n - 24491808)*a(n-1) + 3*n*(2451*n^8 - 73161*n^7 + 850153*n^6 - 4796076*n^5 + 12712261*n^4 - 7403931*n^3 - 33886709*n^2 + 64848252*n - 30495792)*a(n-2) - (8170*n^9 - 256125*n^8 + 3222045*n^7 - 20734872*n^6 + 70290303*n^5 - 101053185*n^4 - 62925628*n^3 + 384515340*n^2 - 387509328*n + 86320944)*a(n-3) + 3*(4085*n^9 - 134190*n^8 + 1787518*n^7 - 12351340*n^6 + 46074358*n^5 - 78991732*n^4 - 20763151*n^3 + 311152124*n^2 - 443676900*n + 188645328)*a(n-4) - (8170*n^9 - 280635*n^8 + 3929664*n^7 - 28666521*n^6 + 113672493*n^5 - 215520840*n^4 + 17606573*n^3 + 648300408*n^2 - 951192216*n + 363243312)*a(n-5) + 2*(4085*n^9 - 146445*n^8 + 2159949*n^7 - 16771674*n^6 + 71463813*n^5 - 145058547*n^4 - 9273941*n^3 + 640553178*n^2 - 1114925472*n + 598040712)*a(n-6) + (8170*n^9 - 305145*n^8 + 4669113*n^7 - 37343346*n^6 + 161916525*n^5 - 325736907*n^4 - 55373986*n^3 + 1484026824*n^2 - 2345628420*n + 1080273456)*a(n-7) + (6536*n^9 - 253920*n^8 + 4039503*n^7 - 33528057*n^6 + 150519924*n^5 - 315037869*n^4 - 26105741*n^3 + 1400728128*n^2 - 2351058696*n + 1235710944)*a(n-8) + (n-9)*(6536*n^8 - 204900*n^7 + 2511339*n^6 - 14959584*n^5 + 41778954*n^4 - 25451829*n^3 - 129319352*n^2 + 282520572*n - 168563664)*a(n-9) + 3*(n-10)*(n-9)*(817*n^7 - 18668*n^6 + 155929*n^5 - 559001*n^4 + 589888*n^3 + 1351597*n^2 - 3752130*n + 2343528)*a(n-10). - Vaclav Kotesovec, Jun 05 2014
a(n) ~ c * d^n / n^(3/2), where d = 3.8821590268628506747194368909643384060073824... is the root of the equation d^8 - 2*d^7 - 10*d^6 + 12*d^5 - 5*d^4 - 2*d^3 - 5*d^2 - 8*d - 3 = 0, and c = 0.56162811676670317653498040062091920282038218... . - Vaclav Kotesovec, Jun 05 2014

A135307 Number of Dyck paths of semilength n that do not contain the string UDDU.

Original entry on oeis.org

1, 1, 2, 4, 9, 23, 63, 178, 514, 1515, 4545, 13827, 42540, 132124, 413741, 1304891, 4141198, 13214815, 42375461, 136478383, 441285890, 1431925180, 4661485203, 15219836738, 49827678840, 163535624722, 537962562453, 1773437280323
Offset: 0

Views

Author

N. J. A. Sloane, Dec 07 2007

Keywords

Comments

Top left terms of powers of the production matrix M generates sequence A102403. - Gary W. Adamson, Jan 30 2012

Examples

			a(6) = 63 since the top row of M^5 = (17, 17, 13, 10, 5, 1), sum of terms = 63.
		

Crossrefs

Leading column of A135306.
Cf. A102403.
Column k=9 of A243753.

Programs

  • Maple
    A135306 := proc(n,k) if n =0 then 1 ; else add((-1)^(j-k)*binomial(n-k,j-k)*binomial(2*n-3*j,n-j+1),j=k..floor((n-1)/2)) ; %*binomial(n,k)/n ; fi ; end: A135307 := proc(n) A135306(n,0) ; end: for n from 0 to 30 do printf("%a, ",A135307(n)) ; od: # R. J. Mathar, Dec 08 2007
    # second Maple program:
    a:= proc(n) option remember; `if`(n<4, [1$2, 2, 4][n+1],
          (2*n*(n-1)*(28*n^2-56*n-3)*a(n-1)
           +(140*n^4-630*n^3+1063*n^2-699*n+144)*a(n-2)
           -12*(n-3)*(14*n^3-42*n^2+16*n+21)*a(n-3)
           +23*(n-3)*(n-4)*(28*n^2-14*n-3)*a(n-4))/
           (n*(n+1)*(28*n^2-70*n+39)))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Sep 13 2014
  • Mathematica
    a[n_] := Sum[(-1)^j*Binomial[n, j]*Binomial[2*n-3*j, n-j+1], {j, 0, (n-1)/2}]/n; a[0] = 1; Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Nov 27 2014, after R. J. Mathar *)

Formula

G.f.: f(x) satisfies x*f(x)^3 - (x+1)*f(x)^2 + (2*x+1)*f(x) - x = 0 . - Eric Rowland, Mar 29 2013
The Sapounakis et al. reference gives an explicit formula.
From Gary W. Adamson, Jan 30 2012: (Start)
a(n) is the sum of top row terms in M^(n-1), where M = the following infinite square production matrix:
1, 1, 0, 0, 0, 0, ...
0, 1, 1, 0, 0, 0, ...
1, 0, 1, 1, 0, 0, ...
1, 1, 0, 1, 1, 0, ...
1, 1, 1, 0, 1, 1, ... (End)
a(n) ~ sqrt(8 + 5*sqrt(2) + sqrt(2*(11 + 8*sqrt(2))/7))/4 * ((1 + sqrt(13 + 16*sqrt(2)))/2)^n / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Jan 27 2015

Extensions

More terms from R. J. Mathar, Dec 08 2007

A242450 Number T(n,k) of Dyck paths of semilength n having exactly k (possibly overlapping) occurrences of the consecutive steps UUDDUDUUUUDUDDDDUUDD (with U=(1,1), D=(1,-1)); triangle T(n,k), n>=0, 0<=k<=max(0,floor((n-2)/8)), read by rows.

Original entry on oeis.org

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16795, 1, 58783, 3, 208002, 10, 742865, 35, 2674314, 126, 9694383, 462, 35355954, 1716, 129638355, 6435, 477614391, 24308, 1, 1767170815, 92372, 3, 6563767715, 352694, 11, 24464914983, 1351996, 41, 91477363496, 5199988
Offset: 0

Views

Author

Alois P. Heinz, Jun 12 2014

Keywords

Comments

UUDDUDUUUUDUDDDDUUDD is a Dyck path that contains all sixteen consecutive step patterns of length 4.

Examples

			Triangle T(n,k) begins:
:  0 :           1;
:  1 :           1;
:  2 :           2;
:  3 :           5;
:  4 :          14;
:  5 :          42;
:  6 :         132;
:  7 :         429;
:  8 :        1430;
:  9 :        4862;
: 10 :       16795,       1;
: 11 :       58783,       3;
: 12 :      208002,      10;
: 13 :      742865,      35;
: 14 :     2674314,     126;
: 15 :     9694383,     462;
: 16 :    35355954,    1716;
: 17 :   129638355,    6435;
: 18 :   477614391,   24308,  1;
: 19 :  1767170815,   92372,  3;
: 20 :  6563767715,  352694, 11;
: 21 : 24464914983, 1351996, 41;
		

Crossrefs

Row sums give A000108.
T(834828,k) = A243752(834828,k).
T(n,0) = A243753(n,834828).
Cf. A243820.

Programs

  • Maple
    b:= proc(x, y, t) option remember; `if`(x=0, 1,
         expand(`if`(y>=x-1, 0, b(x-1, y+1, [2, 3, 3, 2, 6, 3,
           8, 9, 10, 11, 3, 13, 3, 2, 2, 2, 18, 19, 3, 2][t]))+
         `if`(t=20, z, 1)*`if`(y=0, 0, b(x-1, y-1, [1, 1, 4, 5, 1, 7,
           1, 1, 4, 4, 12, 5, 14, 15, 16, 17, 1, 1, 20, 5][t]))))
        end:
    T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(2*n, 0, 1)):
    seq(T(n), n=0..30);
  • Mathematica
    b[x_, y_, t_] := b[x, y, t] = If[x == 0, 1, Expand[If[y >= x - 1, 0, b[x - 1, y + 1, {2, 3, 3, 2, 6, 3, 8, 9, 10, 11, 3, 13, 3, 2, 2, 2, 18, 19, 3, 2}[[t]]]] + If[t == 20, z, 1]*If[y == 0, 0, b[x - 1, y - 1, {1, 1, 4, 5, 1, 7, 1, 1, 4, 4, 12, 5, 14, 15, 16, 17, 1, 1, 20, 5}[[t]]]]]];
    T[n_] := CoefficientList[b[2n, 0, 1], z];
    T /@ Range[0, 30] // Flatten (* Jean-François Alcover, Mar 27 2021, after Alois P. Heinz *)

A243754 Number of Dyck paths of semilength n avoiding the consecutive step pattern given by the binary expansion of n, where 1=U=(1,1) and 0=D=(1,-1).

Original entry on oeis.org

1, 0, 0, 1, 1, 9, 1, 127, 323, 1515, 4191, 10455, 20705, 93802, 113634, 3219205, 10626023, 45980364, 139604903, 555857157, 1334821448, 7577098816, 20676558270, 61994003643, 193904367362, 800928670232, 2374027931492, 12506574770693, 29311991924792
Offset: 0

Views

Author

Alois P. Heinz, Jun 09 2014

Keywords

Examples

			a(5) = 9 because there are 9 Dyck paths of semilength 5 avoiding the consecutive step pattern UDU given by the binary expansion of 5 = 101_2: UUDDUUDDUD, UUDDUUUDDD, UUUDDDUUDD, UUUDDUDDUD, UUUDDUUDDD, UUUUDDDDUD, UUUUDDDUDD, UUUUDDUDDD, UUUUUDDDDD.
a(6) = 1: UDUDUDUDUDUD.
		

Crossrefs

Column k=0 of A243752.
Main diagonal of A243753.

A247333 Number of Dyck paths of semilength n avoiding the consecutive step pattern UDUDU, where U=(1,1) and D=(1,-1).

Original entry on oeis.org

1, 1, 2, 4, 11, 31, 92, 283, 893, 2875, 9407, 31189, 104555, 353794, 1206821, 4145350, 14326184, 49778473, 173794610, 609392578, 2145057797, 7577098816, 26850456704, 95425761829, 340047930692, 1214738997142, 4349231444405, 15604726428805, 56098211626478
Offset: 0

Views

Author

Alois P. Heinz, Sep 13 2014

Keywords

Crossrefs

Cf. A001006.
Column k=0 of A246188.
Column k=21 of A243753.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<5, [1$2, 2, 4, 11][n+1],
          ((n-2)*a(n-1) +(7*n-11)*a(n-2) +(11*n-31)*a(n-3)
          +(9*n-36)*a(n-4) +(3*n-15)*a(n-5)) / (n+1))
        end:
    seq(a(n), n=0..40);
  • Mathematica
    CoefficientList[Series[(1 + x + x^2 - Sqrt[-3 x^4 - 6 x^3 - 5 x^2 - 2 x + 1])/(2 x^2 + 2 x), {x, 0, 28}], x] (* or *)
    {1}~Join~Table[Sum[(Binomial[k, n - k] Sum[Binomial[j, -k + 2 j - 1] Binomial[k, j], {j, 0, k}])/k, {k, 1, n}], {n, 1, 28}] (* Michael De Vlieger, Mar 03 2016, the latter after Maxima by Vladimir Kruchinin *)
  • Maxima
    a(n):=if n=0 then 1 else sum((binomial(k,n-k)*sum(binomial(j,-k+2*j-1)*binomial(k,j),j,0,k))/k,k,1,n); /* Vladimir Kruchinin, Mar 03 2016 */

Formula

Recursion: see Maple program.
a(n) ~ sqrt(42-6*sqrt(21)) * ((3+sqrt(21))/2)^n / (4 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Sep 16 2014
From Vladimir Kruchinin, Mar 03 2016: (Start)
G.f.: (1+x+x^2-sqrt(-3*x^4-6*x^3-5*x^2-2*x+1))/(2*x^2+2*x).
G.f.: B(x)+1, where B(x) satisfies B(x)=(x+x^2)*(1+B(x)+B(x)^2).
a(n) = Sum_{k=1..n} binomial(k,n-k)*M(k+1), a(0)=1, where M(k) are Motzkin numbers (A001006). (End)
Previous Showing 11-20 of 23 results. Next