cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-28 of 28 results.

A341880 Number of ordered factorizations of n into 4 factors > 1.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 6, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 16, 0, 0, 0, 0, 0, 4, 0, 4, 0, 0, 0, 12, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 28, 0, 0, 0, 0, 0, 0, 0, 16, 1, 0, 0, 12, 0, 0, 0, 4, 0, 12, 0, 0, 0, 0, 0, 40, 0, 0, 0, 6, 0, 0, 0, 4, 0, 0, 0, 28, 0, 0, 0, 16
Offset: 16

Views

Author

Ilya Gutkovskiy, Feb 22 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; series(x*(1+add(b(n/d),
          d=numtheory[divisors](n) minus {1, n})), x, 5)
        end:
    a:= n-> coeff(b(n), x, 4):
    seq(a(n), n=16..112);  # Alois P. Heinz, Feb 22 2021
  • Mathematica
    b[n_] := b[n] = Series[x*(1 + Sum[b[n/d],
         {d, Divisors[n] ~Complement~ {1, n}}]), {x, 0, 5}];
    a[n_] := Coefficient[b[n], x, 4];
    Table[a[n], {n, 16, 112}] (* Jean-François Alcover, Feb 28 2022, after Alois P. Heinz *)

Formula

Dirichlet g.f.: (zeta(s) - 1)^4.
a(n) = 6 * A000005(n) - 4 * A007425(n) + A007426(n) - 4 for n > 1.

A341881 Number of ordered factorizations of n into 5 factors > 1.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 25, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 20, 0, 0, 0, 0, 0, 0, 0, 15
Offset: 32

Views

Author

Ilya Gutkovskiy, Feb 22 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; series(x*(1+add(b(n/d),
          d=numtheory[divisors](n) minus {1, n})), x, 6)
        end:
    a:= n-> coeff(b(n), x, 5):
    seq(a(n), n=32..128);  # Alois P. Heinz, Feb 22 2021
  • Mathematica
    b[n_] := b[n] = Series[x*(1 + Sum[b[n/d],
         {d, Divisors[n] ~Complement~ {1, n}}]), {x, 0, 6}];
    a[n_] := Coefficient[b[n], x, 5];
    Table[a[n], {n, 32, 128}] (* Jean-François Alcover, Feb 28 2022, after Alois P. Heinz *)

Formula

Dirichlet g.f.: (zeta(s) - 1)^5.
a(n) = -10 * A000005(n) + 10 * A007425(n) - 5 * A007426(n) + A061200(n) + 5 for n > 1.

A341882 Number of ordered factorizations of n into 6 factors > 1.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6
Offset: 64

Views

Author

Ilya Gutkovskiy, Feb 22 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; series(x*(1+add(b(n/d),
          d=numtheory[divisors](n) minus {1, n})), x, 7)
        end:
    a:= n-> coeff(b(n), x, 6):
    seq(a(n), n=64..160);  # Alois P. Heinz, Feb 22 2021
  • Mathematica
    b[n_] := b[n] = Series[x*(1 + Sum[b[n/d],
         {d, Divisors[n]~Complement~{1, n}}]), {x, 0, 7}];
    a[n_] := Coefficient[b[n], x, 6];
    Table[a[n], {n, 64, 160}] (* Jean-François Alcover, Feb 28 2022, after Alois P. Heinz *)

Formula

Dirichlet g.f.: (zeta(s) - 1)^6.
a(n) = 15 * A000005(n) - 20 * A007425(n) + 15 * A007426(n) - 6 * A061200(n) + A034695(n) - 6 for n > 1.

A330773 Number of perfect compositions of n.

Original entry on oeis.org

1, 1, 1, 3, 1, 5, 1, 11, 3, 5, 1, 27, 1, 5, 5, 49, 1, 27, 1, 27, 5, 5, 1, 163, 3, 5, 11, 27, 1, 49, 1, 261, 5, 5, 5, 231, 1, 5, 5, 163, 1, 49, 1, 27, 27, 5, 1, 1109, 3, 27, 5, 27, 1, 163, 5, 163, 5, 5, 1, 435, 1, 5, 27, 1631, 5, 49, 1, 27, 5, 49, 1, 2055, 1, 5, 27, 27, 5, 49, 1
Offset: 0

Views

Author

Augustine O. Munagi, Dec 30 2019

Keywords

Comments

A perfect composition of n is one whose sequence of parts contains one composition of every positive integer less than n.

Examples

			a(7) = 11 because the perfect compositions are 1111111, 1222, 2221, 1114, 4111, 124, 142, 214, 241, 412, 421.
For example, 241 generates the compositions of 1,...,6: 1,2,21,4,41,24.
		

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; expand(x*(1+add(b(n/d),
           d=numtheory[divisors](n) minus {1, n})))
        end:
    a:= n-> (p-> add(coeff(p, x, i)*i!, i=1..degree(p)))(b(n+1)):
    seq(a(n), n=0..100);  # Alois P. Heinz, Jan 15 2020
  • Mathematica
    b[n_] := b[n] = x(1+Sum[b[n/d], {d, Divisors[n]~Complement~{1, n}}]);
    a[n_] := With[{p = b[n+1]}, Sum[Coefficient[p, x, i] i!, {i, Exponent[p, x]}]];
    a /@ Range[0, 100] (* Jean-François Alcover, Nov 17 2020, after Alois P. Heinz *)

Formula

a(1)=1, a(n) = Sum_{k=1..Omega(n+1)} k! * A251683(n+1,k), n>1.

A337106 Number of nontrivial divisors of n!.

Original entry on oeis.org

0, 0, 0, 2, 6, 14, 28, 58, 94, 158, 268, 538, 790, 1582, 2590, 4030, 5374, 10750, 14686, 29374, 41038, 60798, 95998, 191998, 242878, 340030, 532222, 677374, 917278, 1834558, 2332798, 4665598, 5529598, 7864318, 12165118, 16422910, 19595518, 39191038, 60466174
Offset: 0

Views

Author

Gus Wiseman, Aug 23 2020

Keywords

Comments

A divisor of n is trivial if it is 1 or n.

Examples

			The a(3) = 2 through a(5) =14 nontrivial divisions:
  6/2  24/2   120/2
  6/3  24/3   120/3
       24/4   120/4
       24/6   120/5
       24/8   120/6
       24/12  120/8
              120/10
              120/12
              120/15
              120/20
              120/24
              120/30
              120/40
              120/60
		

Crossrefs

A070824 counts nontrivial divisors.
A153823 counts proper divisors of n!.
A337107 has this sequence as column k = 3.
A000005 counts divisors.
A000142 lists factorial numbers.
A001055 counts factorizations.
A027423 counts divisors of factorial numbers.
A067824 counts chains of divisors starting with n.
A074206 counts chains of divisors from n to 1.
A076716 counts factorizations of factorial numbers.
A253249 counts chains of divisors.
A337071 counts chains of divisors starting with n!.
A337105 counts chains of divisors from n! to 1.

Programs

  • Mathematica
    Table[Length[DeleteCases[Divisors[n!],1|n!]],{n,10}]
  • Python
    from sympy import factorial, divisor_count
    def A337106(n):
        return 0 if n <= 1 else divisor_count(factorial(n))-2 # Chai Wah Wu, Aug 24 2020

Formula

a(n) = A000005(n!) - 2 for n > 1.
a(n) = A070824(n!).

Extensions

a(0) from Chai Wah Wu, Aug 24 2020

A343940 Sum of numbers of ways to choose a k-chain of divisors of n - k, for k = 0..n - 1.

Original entry on oeis.org

1, 2, 4, 7, 12, 19, 30, 45, 66, 95, 135, 187, 256, 346, 463, 613, 803, 1040, 1336, 1703, 2158, 2720, 3409, 4244, 5251, 6461, 7911, 9643, 11707, 14157, 17058, 20480, 24502, 29212, 34707, 41094, 48496, 57053, 66926, 78296, 91369, 106376, 123581, 143276, 165786
Offset: 1

Views

Author

Gus Wiseman, May 07 2021

Keywords

Examples

			The a(8) = 45 chains:
  ()  (1)  (1/1)  (1/1/1)  (1/1/1/1)  (1/1/1/1/1)  (1/1/1/1/1/1)
      (7)  (2/1)  (5/1/1)  (2/1/1/1)  (3/1/1/1/1)  (2/1/1/1/1/1)
           (2/2)  (5/5/1)  (2/2/1/1)  (3/3/1/1/1)  (2/2/1/1/1/1)
           (3/1)  (5/5/5)  (2/2/2/1)  (3/3/3/1/1)  (2/2/2/1/1/1)
           (3/3)           (2/2/2/2)  (3/3/3/3/1)  (2/2/2/2/1/1)
           (6/1)           (4/1/1/1)  (3/3/3/3/3)  (2/2/2/2/2/1)
           (6/2)           (4/2/1/1)               (2/2/2/2/2/2)
           (6/3)           (4/2/2/1)
           (6/6)           (4/2/2/2)
                           (4/4/1/1)
                           (4/4/2/1)           (1/1/1/1/1/1/1)
                           (4/4/2/2)
                           (4/4/4/1)
                           (4/4/4/2)
                           (4/4/4/4)
		

Crossrefs

Antidiagonal sums of the array (or row sums of the triangle) A334997.
A000005 counts divisors of n.
A067824 counts strict chains of divisors starting with n.
A074206 counts strict chains of divisors from n to 1.
A146291 counts divisors of n with k prime factors (with multiplicity).
A251683 counts strict length k + 1 chains of divisors from n to 1.
A253249 counts nonempty chains of divisors of n.
A334996 counts strict length k chains of divisors from n to 1.
A337255 counts strict length k chains of divisors starting with n.
Array version of A334997 has:
- column k = 2 A007425,
- transpose A077592,
- subdiagonal n = k + 1 A163767,
- strict case A343662 (row sums: A337256),
- version counting all multisets of divisors (not just chains) A343658,
- diagonal n = k A343939.

Programs

  • Mathematica
    Total/@Table[Length[Select[Tuples[Divisors[n-k],k],And@@Divisible@@@Partition[#,2,1]&]],{n,12},{k,0,n-1}]

A343936 Number of ways to choose a multiset of n divisors of n - 1.

Original entry on oeis.org

1, 2, 3, 10, 5, 56, 7, 120, 45, 220, 11, 4368, 13, 560, 680, 3876, 17, 26334, 19, 42504, 1771, 2024, 23, 2035800, 325, 3276, 3654, 201376, 29, 8347680, 31, 376992, 6545, 7140, 7770, 145008513, 37, 9880, 10660, 53524680, 41, 73629072, 43, 1712304, 1906884
Offset: 1

Views

Author

Gus Wiseman, May 05 2021

Keywords

Examples

			The a(1) = 1 through a(5) = 5 multisets:
  {}  {1}  {1,1}  {1,1,1}  {1,1,1,1}
      {2}  {1,3}  {1,1,2}  {1,1,1,5}
           {3,3}  {1,1,4}  {1,1,5,5}
                  {1,2,2}  {1,5,5,5}
                  {1,2,4}  {5,5,5,5}
                  {1,4,4}
                  {2,2,2}
                  {2,2,4}
                  {2,4,4}
                  {4,4,4}
The a(6) = 56 multisets:
  11111  11136  11333  12236  13366  22266  23666
  11112  11166  11336  12266  13666  22333  26666
  11113  11222  11366  12333  16666  22336  33333
  11116  11223  11666  12336  22222  22366  33336
  11122  11226  12222  12366  22223  22666  33366
  11123  11233  12223  12666  22226  23333  33666
  11126  11236  12226  13333  22233  23336  36666
  11133  11266  12233  13336  22236  23366  66666
		

Crossrefs

The version for chains of divisors is A163767.
Diagonal n = k + 1 of A343658.
Choosing n divisors of n gives A343935.
A000005 counts divisors.
A000312 = n^n.
A007318 counts k-sets of elements of {1..n}.
A009998 = n^k (as an array, offset 1).
A059481 counts k-multisets of elements of {1..n}.
A146291 counts divisors of n with k prime factors (with multiplicity).
A253249 counts nonempty chains of divisors of n.
Strict chains of divisors:
- A067824 counts strict chains of divisors starting with n.
- A074206 counts strict chains of divisors from n to 1.
- A251683 counts strict length k + 1 chains of divisors from n to 1.
- A334996 counts strict length-k chains of divisors from n to 1.
- A337255 counts strict length-k chains of divisors starting with n.
- A337256 counts strict chains of divisors of n.
- A343662 counts strict length-k chains of divisors.

Programs

  • Mathematica
    multchoo[n_,k_]:=Binomial[n+k-1,k];
    Table[multchoo[DivisorSigma[0,n],n-1],{n,50}]

Formula

a(n) = ((sigma(n - 1), n)) = binomial(sigma(n - 1) + n - 1, n) where sigma = A000005 and binomial = A007318.

A322480 Irregular triangular array read by rows: T(n,k), n>=1, is the number of ordered factorizations corresponding to each unordered factorization, indexed by k.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 2, 3, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 1, 1, 2, 2, 3, 1, 1, 2, 2, 3, 1, 2, 1, 2, 1, 1, 2, 2, 2, 3, 6, 4, 1, 1, 1, 2, 1, 2, 1, 1, 2, 2, 3, 1, 1, 2, 2, 2, 6, 1, 1, 2, 2, 3, 3, 4, 1, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 3, 1, 6, 3, 6, 1, 1, 2, 1, 2, 1, 2, 2, 3, 2, 6, 4, 1, 1, 2, 2, 2, 6, 1, 1, 2, 2, 3, 1, 2, 2, 3, 1, 2, 1, 1, 2, 2, 2, 3, 2, 6, 6, 4, 12, 5
Offset: 1

Views

Author

Thomas Anton, Dec 09 2018

Keywords

Comments

The method of indexing the unordered factorizations of n in this array is as follows: take all unordered factorizations of n and write them with their factors in nonincreasing order (e.g., 2*4*5*3 becomes 5*4*3*2), and order these reverse-lexicographically (e.g., for 12: 12, 6*2, 4*3, 3*2*2), then assign the index k to the k-th factorization in this ordering.
For a sequence f with Dirichlet inverse f^(-1), f^(-1)(n) is the sum over all multisets M of integers > 1 with product n, of the product of the terms f(m) with indices m in M (counted with multiplicity) multiplied by T(n,k)*(-1)^c/f(1)^(c+1) where c = |M| and T(n,k) corresponds to M.
The multiset of entries in the n-th row is determined by the prime signature of n.
For the p^j-th row with p a prime, the entries give the number of compositions of j corresponding to each partition of j, indexed by k in an analogous manner, given by the j-th row of A048996.

Examples

			  1;
  1;
  1;
  1, 1;
  1;
  1, 2;
  1;
  1, 2, 1;
  1, 1;
  1, 2;
  1;
  1, 2, 2, 3;
  etc.
The 12th row is 1,2,2,3, because 12 can be factored as 12, 6*2, 3*4 or 3*2*2 with respective sets of ordered factorizations {12}, {6*2, 2*6}, {4*3, 3*4} and {3*2*2, 2*3*2, 2*2*3}, with respective cardinalities 1, 2, 2 and 3.
		

Crossrefs

Cf. A048996, A002033 (row sums), A212171, A251683, A001055 (row lengths).
Previous Showing 21-28 of 28 results.