A337070
Number of strict chains of divisors starting with the superprimorial A006939(n).
Original entry on oeis.org
1, 2, 16, 1208, 1383936, 32718467072, 20166949856488576, 391322675415566237681536
Offset: 0
The a(0) = 1 through a(2) = 16 chains:
1 2 12
2/1 12/1
12/2
12/3
12/4
12/6
12/2/1
12/3/1
12/4/1
12/4/2
12/6/1
12/6/2
12/6/3
12/4/2/1
12/6/2/1
12/6/3/1
A336571 is the case with distinct prime multiplicities.
A337071 is the version for factorials.
A000142 counts divisors of superprimorials.
A006939 lists superprimorials or Chernoff numbers.
A067824 counts chains of divisors starting with n.
A074206 counts chains of divisors from n to 1.
A317829 counts factorizations of superprimorials.
-
chern[n_]:=Product[Prime[i]^(n-i+1),{i,n}];
chnsc[n_]:=If[n==1,{{1}},Prepend[Join@@Table[Prepend[#,n]&/@chnsc[d],{d,Most[Divisors[n]]}],{n}]];
Table[Length[chnsc[chern[n]]],{n,0,3}]
A337071
Number of strict chains of divisors starting with n!.
Original entry on oeis.org
1, 1, 2, 6, 40, 264, 3776, 40256, 1168000, 34204032, 1107791872, 23233380352, 1486675898368, 38934372315136, 1999103691427840, 132874800979423232, 20506322412604129280, 776179999255323115520, 107455579038104865996800, 4651534843901106606571520, 731092060557632280262082560
Offset: 0
The a(1) = 1 through a(3) = 6 chains:
1 2 6
2/1 6/1
6/2
6/3
6/2/1
6/3/1
The a(4) = 40 chains:
24 24/1 24/2/1 24/4/2/1 24/8/4/2/1
24/2 24/3/1 24/6/2/1 24/12/4/2/1
24/3 24/4/1 24/6/3/1 24/12/6/2/1
24/4 24/4/2 24/8/2/1 24/12/6/3/1
24/6 24/6/1 24/8/4/1
24/8 24/6/2 24/8/4/2
24/12 24/6/3 24/12/2/1
24/8/1 24/12/3/1
24/8/2 24/12/4/1
24/8/4 24/12/4/2
24/12/1 24/12/6/1
24/12/2 24/12/6/2
24/12/3 24/12/6/3
24/12/4
24/12/6
A337070 is the version for superprimorials.
A337074 counts the case with distinct prime multiplicities.
A337105 is the case ending with one.
A027423 counts divisors of factorial numbers.
A067824 counts chains of divisors starting with n.
A074206 counts chains of divisors from n to 1.
A076716 counts factorizations of factorial numbers.
-
chnsc[n_]:=Prepend[Join@@Table[Prepend[#,n]&/@chnsc[d],{d,Most[Divisors[n]]}],{n}];
Table[Length[chnsc[n!]],{n,0,5}]
A342085
Number of decreasing chains of distinct superior divisors starting with n.
Original entry on oeis.org
1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 5, 1, 2, 2, 6, 1, 5, 1, 4, 2, 2, 1, 11, 2, 2, 3, 4, 1, 7, 1, 10, 2, 2, 2, 15, 1, 2, 2, 10, 1, 6, 1, 4, 5, 2, 1, 26, 2, 5, 2, 4, 1, 11, 2, 10, 2, 2, 1, 21, 1, 2, 5, 20, 2, 6, 1, 4, 2, 7, 1, 39, 1, 2, 5, 4, 2, 6, 1, 23, 6, 2, 1
Offset: 1
The a(n) chains for n = 2, 4, 8, 12, 16, 20, 24, 30, 32:
2 4 8 12 16 20 24 30 32
4/2 8/4 12/4 16/4 20/5 24/6 30/6 32/8
8/4/2 12/6 16/8 20/10 24/8 30/10 32/16
12/4/2 16/4/2 20/10/5 24/12 30/15 32/8/4
12/6/3 16/8/4 24/6/3 30/6/3 32/16/4
16/8/4/2 24/8/4 30/10/5 32/16/8
24/12/4 30/15/5 32/8/4/2
24/12/6 32/16/4/2
24/8/4/2 32/16/8/4
24/12/4/2 32/16/8/4/2
24/12/6/3
The a(n) ordered factorizations for n = 2, 4, 8, 12, 16, 20, 24, 30, 32:
2 4 8 12 16 20 24 30 32
2*2 4*2 4*3 4*4 5*4 6*4 6*5 8*4
2*2*2 6*2 8*2 10*2 8*3 10*3 16*2
2*2*3 2*2*4 5*2*2 12*2 15*2 4*2*4
3*2*2 4*2*2 3*2*4 3*2*5 4*4*2
2*2*2*2 4*2*3 5*2*3 8*2*2
4*3*2 5*3*2 2*2*2*4
6*2*2 2*2*4*2
2*2*2*3 4*2*2*2
2*2*3*2 2*2*2*2*2
3*2*2*2
The restriction to powers of 2 is
A045690.
The strictly inferior version is
A342083.
The strictly superior version is
A342084.
The additive version not allowing equality is
A342098.
A003238 counts divisibility chains summing to n-1, with strict case
A122651.
A038548 counts inferior (or superior) divisors.
A056924 counts strictly inferior (or strictly superior) divisors.
A067824 counts strict chains of divisors starting with n.
A074206 counts strict chains of divisors from n to 1 (also ordered factorizations).
A167865 counts strict chains of divisors > 1 summing to n.
A253249 counts strict chains of divisors.
A334996 counts ordered factorizations by product and length.
A334997 counts chains of divisors of n by length.
Cf.
A000203,
A001248,
A005117,
A006530,
A020639,
A057567,
A057568,
A112798,
A169594,
A337105,
A342096,
A342097.
-
a:= proc(n) option remember; 1+add(`if`(d>=n/d,
a(d), 0), d=numtheory[divisors](n) minus {n})
end:
seq(a(n), n=1..128); # Alois P. Heinz, Jun 24 2021
-
cmo[n_]:=Prepend[Prepend[#,n]&/@Join@@cmo/@Select[Most[Divisors[n]],#>=n/#&],{n}];
Table[Length[cmo[n]],{n,100}]
A342495
Number of compositions of n with constant (equal) first quotients.
Original entry on oeis.org
1, 1, 2, 4, 5, 6, 8, 10, 10, 11, 12, 12, 16, 16, 18, 20, 19, 18, 22, 22, 24, 28, 24, 24, 30, 27, 30, 30, 34, 30, 38, 36, 36, 36, 36, 40, 43, 40, 42, 46, 48, 42, 52, 46, 48, 52, 48, 48, 56, 55, 54, 54, 58, 54, 60, 58, 64, 64, 60, 60, 72, 64, 68, 74, 69, 72, 72
Offset: 0
The composition (1,2,4,8) has first quotients (2,2,2) so is counted under a(15).
The composition (4,5,6) has first quotients (5/4,6/5) so is not counted under a(15).
The a(1) = 1 through a(7) = 10 compositions:
(1) (2) (3) (4) (5) (6) (7)
(11) (12) (13) (14) (15) (16)
(21) (22) (23) (24) (25)
(111) (31) (32) (33) (34)
(1111) (41) (42) (43)
(11111) (51) (52)
(222) (61)
(111111) (124)
(421)
(1111111)
The version for differences instead of quotients is
A175342.
The strict unordered version is
A342515.
A000005 counts constant compositions.
A000009 counts strictly increasing (or strictly decreasing) compositions.
A000041 counts weakly increasing (or weakly decreasing) compositions.
A167865 counts strict chains of divisors > 1 summing to n.
Cf.
A002843,
A003242,
A008965,
A048004,
A059966,
A074206,
A167606,
A253249,
A318991,
A318992,
A325557,
A342528.
-
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],SameQ@@Divide@@@Partition[#,2,1]&]],{n,0,15}]
A342529
Number of compositions of n with distinct first quotients.
Original entry on oeis.org
1, 1, 2, 3, 7, 13, 19, 36, 67, 114, 197, 322, 564, 976, 1614, 2729, 4444, 7364, 12357, 20231, 33147, 53973, 87254, 140861, 227535, 368050, 589706, 940999, 1497912, 2378260, 3774297, 5964712, 9416411, 14822087, 23244440, 36420756
Offset: 0
The composition (2,1,2,3) has first quotients (1/2,2,3/2) so is counted under a(8).
The a(1) = 1 through a(5) = 13 compositions:
(1) (2) (3) (4) (5)
(1,1) (1,2) (1,3) (1,4)
(2,1) (2,2) (2,3)
(3,1) (3,2)
(1,1,2) (4,1)
(1,2,1) (1,1,3)
(2,1,1) (1,2,2)
(1,3,1)
(2,1,2)
(2,2,1)
(3,1,1)
(1,1,2,1)
(1,2,1,1)
The version for differences instead of quotients is
A325545.
The version for equal first quotients is
A342495.
The strict unordered version is
A342520.
A000005 counts constant compositions.
A000009 counts strictly increasing (or strictly decreasing) compositions.
A000041 counts weakly increasing (or weakly decreasing) compositions.
A167865 counts strict chains of divisors > 1 summing to n.
-
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],UnsameQ@@Divide@@@Partition[#,2,1]&]],{n,0,15}]
A343338
Numbers with no prime index dividing or divisible by all the other prime indices.
Original entry on oeis.org
1, 15, 33, 35, 45, 51, 55, 69, 75, 77, 85, 91, 93, 95, 99, 105, 119, 123, 135, 141, 143, 145, 153, 155, 161, 165, 175, 177, 187, 201, 203, 205, 207, 209, 215, 217, 219, 221, 225, 231, 245, 247, 249, 253, 255, 265, 275, 279, 285, 287, 291, 295, 297, 299, 301
Offset: 1
The sequence of terms together with their prime indices begins:
1: {} 105: {2,3,4} 203: {4,10}
15: {2,3} 119: {4,7} 205: {3,13}
33: {2,5} 123: {2,13} 207: {2,2,9}
35: {3,4} 135: {2,2,2,3} 209: {5,8}
45: {2,2,3} 141: {2,15} 215: {3,14}
51: {2,7} 143: {5,6} 217: {4,11}
55: {3,5} 145: {3,10} 219: {2,21}
69: {2,9} 153: {2,2,7} 221: {6,7}
75: {2,3,3} 155: {3,11} 225: {2,2,3,3}
77: {4,5} 161: {4,9} 231: {2,4,5}
85: {3,7} 165: {2,3,5} 245: {3,4,4}
91: {4,6} 175: {3,3,4} 247: {6,8}
93: {2,11} 177: {2,17} 249: {2,23}
95: {3,8} 187: {5,7} 253: {5,9}
99: {2,2,5} 201: {2,19} 255: {2,3,7}
For example, the prime indices of 975 are {2,3,3,6}, all of which divide 6, but not all of which are multiples of 2, so 975 is not in the sequence.
The first condition alone gives
A342193.
The second condition alone gives
A343337.
The partitions with these Heinz numbers are counted by
A343342.
The opposite version is the complement of
A343343.
A000070 counts partitions with a selected part.
A067824 counts strict chains of divisors starting with n.
A253249 counts strict chains of divisors.
A339564 counts factorizations with a selected factor.
Cf.
A083710,
A130689,
A338470,
A339562,
A341450,
A343341,
A343346,
A343347,
A343348,
A343377,
A343379,
A343382.
A337255
Irregular triangle read by rows where T(n,k) is the number of strict length-k chains of divisors starting with n.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 2, 1, 1, 1, 3, 3, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 5, 7, 3, 1, 1, 1, 3, 2, 1, 3, 2, 1, 4, 6, 4, 1, 1, 1, 1, 5, 7, 3, 1, 1, 1, 5, 7, 3, 1, 3, 2, 1, 3, 2, 1, 1, 1, 7, 15, 13, 4, 1, 2, 1, 1, 3, 2, 1, 3, 3, 1, 1, 5, 7, 3, 1, 1, 1
Offset: 1
Sequence of rows begins:
1: {1} 16: {1,4,6,4,1}
2: {1,1} 17: {1,1}
3: {1,1} 18: {1,5,7,3}
4: {1,2,1} 19: {1,1}
5: {1,1} 20: {1,5,7,3}
6: {1,3,2} 21: {1,3,2}
7: {1,1} 22: {1,3,2}
8: {1,3,3,1} 23: {1,1}
9: {1,2,1} 24: {1,7,15,13,4}
10: {1,3,2} 25: {1,2,1}
11: {1,1} 26: {1,3,2}
12: {1,5,7,3} 27: {1,3,3,1}
13: {1,1} 28: {1,5,7,3}
14: {1,3,2} 29: {1,1}
15: {1,3,2} 30: {1,7,12,6}
Row n = 24 counts the following chains:
24 24/1 24/2/1 24/4/2/1 24/8/4/2/1
24/2 24/3/1 24/6/2/1 24/12/4/2/1
24/3 24/4/1 24/6/3/1 24/12/6/2/1
24/4 24/4/2 24/8/2/1 24/12/6/3/1
24/6 24/6/1 24/8/4/1
24/8 24/6/2 24/8/4/2
24/12 24/6/3 24/12/2/1
24/8/1 24/12/3/1
24/8/2 24/12/4/1
24/8/4 24/12/4/2
24/12/1 24/12/6/1
24/12/2 24/12/6/2
24/12/3 24/12/6/3
24/12/4
24/12/6
A334996 appears to be the case of chains ending with 1.
A001222 counts prime factors with multiplicity.
A067824 counts chains of divisors starting with n.
A074206 counts chains of divisors from n to 1.
A122651 counts chains of divisors summing to n.
A167865 counts chains of divisors > 1 summing to n.
A251683 counts chains of divisors from n to 1 by length.
A253249 counts nonempty chains of divisors.
-
b:= proc(n) option remember; expand(x*(1 +
add(b(d), d=numtheory[divisors](n) minus {n})))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n)):
seq(T(n), n=1..50); # Alois P. Heinz, Aug 23 2020
-
chss[n_]:=Prepend[Join@@Table[Prepend[#,n]&/@chss[d],{d,Most[Divisors[n]]}],{n}];
Table[Length[Select[chss[n],Length[#]==k&]],{n,30},{k,1+PrimeOmega[n]}]
A191161
Hypersigma(n), definition 2: sum of the divisors of n plus the recursive sum of the divisors of the proper divisors.
Original entry on oeis.org
1, 4, 5, 12, 7, 22, 9, 32, 19, 30, 13, 72, 15, 38, 37, 80, 19, 90, 21, 96, 47, 54, 25, 208, 39, 62, 65, 120, 31, 178, 33, 192, 67, 78, 65, 316, 39, 86, 77, 272, 43, 222, 45, 168, 147, 102, 49, 560, 67, 174, 97, 192, 55
Offset: 1
Sequences that appear in the convolution formulas:
A000010,
A000203,
A007429,
A038040,
A060640,
A067824,
A074206,
A174725,
A253249,
A323910,
A323912,
A330575.
-
hsTD[n_] := hsTD[n] = Module[{d = Divisors[n]}, Total[d] + Total[hsTD /@ Most[d]]]; Table[hsTD[n], {n, 100}] (* From T. D. Noe *)
-
a(n)=sumdiv(n,d,if(dCharles R Greathouse IV, Dec 20 2011
A336941
Number of strict chains of divisors starting with the superprimorial A006939(n) and ending with 1.
Original entry on oeis.org
1, 1, 8, 604, 691968, 16359233536, 10083474928244288, 195661337707783118840768, 139988400203593571474134024847360, 4231553868972506381329450624389969130848256, 6090860257621637852755610879241895108657182173073604608, 464479854191019594417264488167571483344961210693790188774166838214656
Offset: 0
The a(2) = 8 chains:
12/1
12/2/1
12/3/1
12/4/1
12/6/1
12/4/2/1
12/6/2/1
12/6/3/1
A336571 is the case with distinct prime multiplicities.
A074206 counts chains of divisors from n to 1.
A006939 lists superprimorials or Chernoff numbers.
A067824 counts divisor chains starting with n.
A317829 counts factorizations of superprimorials.
Cf.
A000142,
A001055,
A002033,
A008480,
A022559,
A027423,
A124010,
A167865,
A181796,
A336417,
A336420,
A337069.
-
chern[n_]:=Product[Prime[i]^(n-i+1),{i,n}];
chns[n_]:=If[n==1,1,Sum[chns[d],{d,Most[Divisors[n]]}]];
Table[chns[chern[n]],{n,0,3}]
-
a(n)={my(sig=vector(n,i,i), m=vecsum(sig)); sum(k=0, m, prod(i=1, #sig, binomial(sig[i]+k-1, k-1))*sum(r=k, m, binomial(r,k)*(-1)^(r-k)))} \\ Andrew Howroyd, Aug 30 2020
A342515
Number of strict partitions of n with constant (equal) first-quotients.
Original entry on oeis.org
1, 1, 1, 2, 2, 3, 3, 5, 4, 5, 5, 6, 6, 8, 8, 9, 8, 9, 9, 11, 10, 13, 11, 12, 12, 13, 14, 14, 15, 15, 16, 18, 16, 17, 17, 19, 18, 20, 20, 22, 21, 21, 23, 23, 22, 24, 23, 24, 24, 27, 25, 26, 27, 27, 27, 28, 29, 31, 29, 30, 31, 32, 33, 35, 32, 35, 33, 35, 34, 35
Offset: 0
The a(1) = 1 through a(15) = 9 partitions (A..F = 10..15):
1 2 3 4 5 6 7 8 9 A B C D E F
21 31 32 42 43 53 54 64 65 75 76 86 87
41 51 52 62 63 73 74 84 85 95 96
61 71 72 82 83 93 94 A4 A5
421 81 91 92 A2 A3 B3 B4
A1 B1 B2 C2 C3
C1 D1 D2
931 842 E1
8421
The version for differences instead of quotients is
A049980.
The non-strict ordered version is
A342495.
The distinct instead of equal version is
A342520.
A000005 counts constant partitions.
A154402 counts partitions with adjacent parts x = 2y.
A167865 counts strict chains of divisors > 1 summing to n.
A175342 counts compositions with equal differences.
Cf.
A003242,
A005117,
A049988,
A057567,
A067824,
A253249,
A307824,
A318991,
A318992,
A325328,
A342086.
-
Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&SameQ@@Divide@@@Partition[#,2,1]&]],{n,0,30}]
Comments