cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 75 results. Next

A337070 Number of strict chains of divisors starting with the superprimorial A006939(n).

Original entry on oeis.org

1, 2, 16, 1208, 1383936, 32718467072, 20166949856488576, 391322675415566237681536
Offset: 0

Views

Author

Gus Wiseman, Aug 15 2020

Keywords

Comments

The n-th superprimorial is A006939(n) = Product_{i = 1..n} prime(i)^(n - i + 1).

Examples

			The a(0) = 1 through a(2) = 16 chains:
  1  2    12
     2/1  12/1
          12/2
          12/3
          12/4
          12/6
          12/2/1
          12/3/1
          12/4/1
          12/4/2
          12/6/1
          12/6/2
          12/6/3
          12/4/2/1
          12/6/2/1
          12/6/3/1
		

Crossrefs

A022915 is the maximal case.
A076954 can be used instead of A006939 (cf. A307895, A325337).
A336571 is the case with distinct prime multiplicities.
A336941 is the case ending with 1.
A337071 is the version for factorials.
A000005 counts divisors.
A000142 counts divisors of superprimorials.
A006939 lists superprimorials or Chernoff numbers.
A067824 counts chains of divisors starting with n.
A074206 counts chains of divisors from n to 1.
A253249 counts chains of divisors.
A317829 counts factorizations of superprimorials.

Programs

  • Mathematica
    chern[n_]:=Product[Prime[i]^(n-i+1),{i,n}];
    chnsc[n_]:=If[n==1,{{1}},Prepend[Join@@Table[Prepend[#,n]&/@chnsc[d],{d,Most[Divisors[n]]}],{n}]];
    Table[Length[chnsc[chern[n]]],{n,0,3}]

Formula

a(n) = 2*A336941(n) for n > 0.
a(n) = A067824(A006939(n)).

A337071 Number of strict chains of divisors starting with n!.

Original entry on oeis.org

1, 1, 2, 6, 40, 264, 3776, 40256, 1168000, 34204032, 1107791872, 23233380352, 1486675898368, 38934372315136, 1999103691427840, 132874800979423232, 20506322412604129280, 776179999255323115520, 107455579038104865996800, 4651534843901106606571520, 731092060557632280262082560
Offset: 0

Views

Author

Gus Wiseman, Aug 16 2020

Keywords

Examples

			The a(1) = 1 through a(3) = 6 chains:
  1  2    6
     2/1  6/1
          6/2
          6/3
          6/2/1
          6/3/1
The a(4) = 40 chains:
  24  24/1   24/2/1   24/4/2/1   24/8/4/2/1
      24/2   24/3/1   24/6/2/1   24/12/4/2/1
      24/3   24/4/1   24/6/3/1   24/12/6/2/1
      24/4   24/4/2   24/8/2/1   24/12/6/3/1
      24/6   24/6/1   24/8/4/1
      24/8   24/6/2   24/8/4/2
      24/12  24/6/3   24/12/2/1
             24/8/1   24/12/3/1
             24/8/2   24/12/4/1
             24/8/4   24/12/4/2
             24/12/1  24/12/6/1
             24/12/2  24/12/6/2
             24/12/3  24/12/6/3
             24/12/4
             24/12/6
		

Crossrefs

A325617 is the maximal case.
A337070 is the version for superprimorials.
A337074 counts the case with distinct prime multiplicities.
A337105 is the case ending with one.
A000005 counts divisors.
A000142 lists factorial numbers.
A027423 counts divisors of factorial numbers.
A067824 counts chains of divisors starting with n.
A074206 counts chains of divisors from n to 1.
A076716 counts factorizations of factorial numbers.
A253249 counts chains of divisors.

Programs

  • Mathematica
    chnsc[n_]:=Prepend[Join@@Table[Prepend[#,n]&/@chnsc[d],{d,Most[Divisors[n]]}],{n}];
    Table[Length[chnsc[n!]],{n,0,5}]

Formula

a(n) = 2*A337105(n) for n > 1.
a(n) = A067824(n!).

Extensions

a(19)-a(20) from Alois P. Heinz, Aug 23 2020

A342085 Number of decreasing chains of distinct superior divisors starting with n.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 5, 1, 2, 2, 6, 1, 5, 1, 4, 2, 2, 1, 11, 2, 2, 3, 4, 1, 7, 1, 10, 2, 2, 2, 15, 1, 2, 2, 10, 1, 6, 1, 4, 5, 2, 1, 26, 2, 5, 2, 4, 1, 11, 2, 10, 2, 2, 1, 21, 1, 2, 5, 20, 2, 6, 1, 4, 2, 7, 1, 39, 1, 2, 5, 4, 2, 6, 1, 23, 6, 2, 1
Offset: 1

Views

Author

Gus Wiseman, Feb 28 2021

Keywords

Comments

We define a divisor d|n to be superior if d >= n/d. Superior divisors are counted by A038548 and listed by A161908.
These chains have first-quotients (in analogy with first-differences) that are term-wise less than or equal to their decapitation (maximum element removed). Equivalently, x <= y^2 for all adjacent x, y. For example, the divisor chain q = 24/8/4/2 has first-quotients (3,2,2), which are less than or equal to (8,4,2), so q is counted under a(24).
Also the number of ordered factorizations of n where each factor is less than or equal to the product of all previous factors.

Examples

			The a(n) chains for n = 2, 4, 8, 12, 16, 20, 24, 30, 32:
  2  4    8      12      16        20       24         30       32
     4/2  8/4    12/4    16/4      20/5     24/6       30/6     32/8
          8/4/2  12/6    16/8      20/10    24/8       30/10    32/16
                 12/4/2  16/4/2    20/10/5  24/12      30/15    32/8/4
                 12/6/3  16/8/4             24/6/3     30/6/3   32/16/4
                         16/8/4/2           24/8/4     30/10/5  32/16/8
                                            24/12/4    30/15/5  32/8/4/2
                                            24/12/6             32/16/4/2
                                            24/8/4/2            32/16/8/4
                                            24/12/4/2           32/16/8/4/2
                                            24/12/6/3
The a(n) ordered factorizations for n = 2, 4, 8, 12, 16, 20, 24, 30, 32:
  2  4    8      12     16       20     24       30     32
     2*2  4*2    4*3    4*4      5*4    6*4      6*5    8*4
          2*2*2  6*2    8*2      10*2   8*3      10*3   16*2
                 2*2*3  2*2*4    5*2*2  12*2     15*2   4*2*4
                 3*2*2  4*2*2           3*2*4    3*2*5  4*4*2
                        2*2*2*2         4*2*3    5*2*3  8*2*2
                                        4*3*2    5*3*2  2*2*2*4
                                        6*2*2           2*2*4*2
                                        2*2*2*3         4*2*2*2
                                        2*2*3*2         2*2*2*2*2
                                        3*2*2*2
		

Crossrefs

The restriction to powers of 2 is A045690.
The inferior version is A337135.
The strictly inferior version is A342083.
The strictly superior version is A342084.
The additive version is A342094, with strict case A342095.
The additive version not allowing equality is A342098.
A001055 counts factorizations.
A003238 counts divisibility chains summing to n-1, with strict case A122651.
A038548 counts inferior (or superior) divisors.
A056924 counts strictly inferior (or strictly superior) divisors.
A067824 counts strict chains of divisors starting with n.
A074206 counts strict chains of divisors from n to 1 (also ordered factorizations).
A167865 counts strict chains of divisors > 1 summing to n.
A207375 lists central divisors.
A253249 counts strict chains of divisors.
A334996 counts ordered factorizations by product and length.
A334997 counts chains of divisors of n by length.
- Inferior: A033676, A066839, A072499, A161906.
- Superior: A033677, A070038, A161908, A341676.
- Strictly Inferior: A060775, A070039, A333806, A341674.
- Strictly Superior: A064052/A048098, A140271, A238535, A341673.

Programs

  • Maple
    a:= proc(n) option remember; 1+add(`if`(d>=n/d,
          a(d), 0), d=numtheory[divisors](n) minus {n})
        end:
    seq(a(n), n=1..128);  # Alois P. Heinz, Jun 24 2021
  • Mathematica
    cmo[n_]:=Prepend[Prepend[#,n]&/@Join@@cmo/@Select[Most[Divisors[n]],#>=n/#&],{n}];
    Table[Length[cmo[n]],{n,100}]

Formula

a(2^n) = A045690(n).

A342495 Number of compositions of n with constant (equal) first quotients.

Original entry on oeis.org

1, 1, 2, 4, 5, 6, 8, 10, 10, 11, 12, 12, 16, 16, 18, 20, 19, 18, 22, 22, 24, 28, 24, 24, 30, 27, 30, 30, 34, 30, 38, 36, 36, 36, 36, 40, 43, 40, 42, 46, 48, 42, 52, 46, 48, 52, 48, 48, 56, 55, 54, 54, 58, 54, 60, 58, 64, 64, 60, 60, 72, 64, 68, 74, 69, 72, 72
Offset: 0

Views

Author

Gus Wiseman, Mar 17 2021

Keywords

Comments

The first quotients of a sequence are defined as if the sequence were an increasing divisor chain, so for example the first quotients of (6,3,1) are (1/2,1/3).

Examples

			The composition (1,2,4,8) has first quotients (2,2,2) so is counted under a(15).
The composition (4,5,6) has first quotients (5/4,6/5) so is not counted under a(15).
The a(1) = 1 through a(7) = 10 compositions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)
       (11)  (12)   (13)    (14)     (15)      (16)
             (21)   (22)    (23)     (24)      (25)
             (111)  (31)    (32)     (33)      (34)
                    (1111)  (41)     (42)      (43)
                            (11111)  (51)      (52)
                                     (222)     (61)
                                     (111111)  (124)
                                               (421)
                                               (1111111)
		

Crossrefs

The version for differences instead of quotients is A175342.
The unordered version is A342496, ranked by A342522.
The strict unordered version is A342515.
The distinct version is A342529.
A000005 counts constant compositions.
A000009 counts strictly increasing (or strictly decreasing) compositions.
A000041 counts weakly increasing (or weakly decreasing) compositions.
A003238 counts chains of divisors summing to n - 1 (strict: A122651).
A167865 counts strict chains of divisors > 1 summing to n.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],SameQ@@Divide@@@Partition[#,2,1]&]],{n,0,15}]

Formula

a(n > 0) = 2*A342496(n) - A000005(n).

A342529 Number of compositions of n with distinct first quotients.

Original entry on oeis.org

1, 1, 2, 3, 7, 13, 19, 36, 67, 114, 197, 322, 564, 976, 1614, 2729, 4444, 7364, 12357, 20231, 33147, 53973, 87254, 140861, 227535, 368050, 589706, 940999, 1497912, 2378260, 3774297, 5964712, 9416411, 14822087, 23244440, 36420756
Offset: 0

Views

Author

Gus Wiseman, Mar 17 2021

Keywords

Comments

The first quotients of a sequence are defined as if the sequence were an increasing divisor chain, so for example the first quotients of (6,3,1) are (1/2,1/3).

Examples

			The composition (2,1,2,3) has first quotients (1/2,2,3/2) so is counted under a(8).
The a(1) = 1 through a(5) = 13 compositions:
  (1)  (2)    (3)    (4)      (5)
       (1,1)  (1,2)  (1,3)    (1,4)
              (2,1)  (2,2)    (2,3)
                     (3,1)    (3,2)
                     (1,1,2)  (4,1)
                     (1,2,1)  (1,1,3)
                     (2,1,1)  (1,2,2)
                              (1,3,1)
                              (2,1,2)
                              (2,2,1)
                              (3,1,1)
                              (1,1,2,1)
                              (1,2,1,1)
		

Crossrefs

The version for differences instead of quotients is A325545.
The version for equal first quotients is A342495.
The unordered version is A342514, ranked by A342521.
The strict unordered version is A342520.
A000005 counts constant compositions.
A000009 counts strictly increasing (or strictly decreasing) compositions.
A000041 counts weakly increasing (or weakly decreasing) compositions.
A001055 counts factorizations (strict: A045778, ordered: A074206).
A003238 counts chains of divisors summing to n - 1 (strict: A122651).
A167865 counts strict chains of divisors > 1 summing to n.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],UnsameQ@@Divide@@@Partition[#,2,1]&]],{n,0,15}]

Extensions

a(21)-a(35) from Alois P. Heinz, Jan 16 2025

A343338 Numbers with no prime index dividing or divisible by all the other prime indices.

Original entry on oeis.org

1, 15, 33, 35, 45, 51, 55, 69, 75, 77, 85, 91, 93, 95, 99, 105, 119, 123, 135, 141, 143, 145, 153, 155, 161, 165, 175, 177, 187, 201, 203, 205, 207, 209, 215, 217, 219, 221, 225, 231, 245, 247, 249, 253, 255, 265, 275, 279, 285, 287, 291, 295, 297, 299, 301
Offset: 1

Views

Author

Gus Wiseman, Apr 13 2021

Keywords

Comments

Alternative name: 1 and numbers whose smallest prime index does not divide all the other prime indices, nor whose greatest prime index is divisible by all the other prime indices.
First differs from A302697 in having 91.
First differs from A337987 in having 91.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also Heinz numbers of partitions with greatest part not divisible by all the others and smallest part not dividing all the others (counted by A343342). The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions.

Examples

			The sequence of terms together with their prime indices begins:
      1: {}         105: {2,3,4}      203: {4,10}
     15: {2,3}      119: {4,7}        205: {3,13}
     33: {2,5}      123: {2,13}       207: {2,2,9}
     35: {3,4}      135: {2,2,2,3}    209: {5,8}
     45: {2,2,3}    141: {2,15}       215: {3,14}
     51: {2,7}      143: {5,6}        217: {4,11}
     55: {3,5}      145: {3,10}       219: {2,21}
     69: {2,9}      153: {2,2,7}      221: {6,7}
     75: {2,3,3}    155: {3,11}       225: {2,2,3,3}
     77: {4,5}      161: {4,9}        231: {2,4,5}
     85: {3,7}      165: {2,3,5}      245: {3,4,4}
     91: {4,6}      175: {3,3,4}      247: {6,8}
     93: {2,11}     177: {2,17}       249: {2,23}
     95: {3,8}      187: {5,7}        253: {5,9}
     99: {2,2,5}    201: {2,19}       255: {2,3,7}
For example, the prime indices of 975 are {2,3,3,6}, all of which divide 6, but not all of which are multiples of 2, so 975 is not in the sequence.
		

Crossrefs

The first condition alone gives A342193.
The second condition alone gives A343337.
The half-opposite versions are A343339 and A343340.
The partitions with these Heinz numbers are counted by A343342.
The opposite version is the complement of A343343.
A000005 counts divisors.
A000070 counts partitions with a selected part.
A001055 counts factorizations.
A056239 adds up prime indices, row sums of A112798.
A067824 counts strict chains of divisors starting with n.
A253249 counts strict chains of divisors.
A339564 counts factorizations with a selected factor.

Programs

  • Mathematica
    Select[Range[100],#==1||With[{p=PrimePi/@First/@FactorInteger[#]},!And@@IntegerQ/@(Max@@p/p)&&!And@@IntegerQ/@(p/Min@@p)]&]

Formula

Intersection of A342193 and A343337.

A337255 Irregular triangle read by rows where T(n,k) is the number of strict length-k chains of divisors starting with n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 2, 1, 1, 1, 3, 3, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 5, 7, 3, 1, 1, 1, 3, 2, 1, 3, 2, 1, 4, 6, 4, 1, 1, 1, 1, 5, 7, 3, 1, 1, 1, 5, 7, 3, 1, 3, 2, 1, 3, 2, 1, 1, 1, 7, 15, 13, 4, 1, 2, 1, 1, 3, 2, 1, 3, 3, 1, 1, 5, 7, 3, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Aug 23 2020

Keywords

Examples

			Sequence of rows begins:
     1: {1}           16: {1,4,6,4,1}
     2: {1,1}         17: {1,1}
     3: {1,1}         18: {1,5,7,3}
     4: {1,2,1}       19: {1,1}
     5: {1,1}         20: {1,5,7,3}
     6: {1,3,2}       21: {1,3,2}
     7: {1,1}         22: {1,3,2}
     8: {1,3,3,1}     23: {1,1}
     9: {1,2,1}       24: {1,7,15,13,4}
    10: {1,3,2}       25: {1,2,1}
    11: {1,1}         26: {1,3,2}
    12: {1,5,7,3}     27: {1,3,3,1}
    13: {1,1}         28: {1,5,7,3}
    14: {1,3,2}       29: {1,1}
    15: {1,3,2}       30: {1,7,12,6}
Row n = 24 counts the following chains:
  24  24/1   24/2/1   24/4/2/1   24/8/4/2/1
      24/2   24/3/1   24/6/2/1   24/12/4/2/1
      24/3   24/4/1   24/6/3/1   24/12/6/2/1
      24/4   24/4/2   24/8/2/1   24/12/6/3/1
      24/6   24/6/1   24/8/4/1
      24/8   24/6/2   24/8/4/2
      24/12  24/6/3   24/12/2/1
             24/8/1   24/12/3/1
             24/8/2   24/12/4/1
             24/8/4   24/12/4/2
             24/12/1  24/12/6/1
             24/12/2  24/12/6/2
             24/12/3  24/12/6/3
             24/12/4
             24/12/6
		

Crossrefs

A008480 gives rows ends.
A067824 gives row sums.
A073093 gives row lengths.
A334996 appears to be the case of chains ending with 1.
A337071 is the sum of row n!.
A000005 counts divisors.
A001055 counts factorizations.
A001222 counts prime factors with multiplicity.
A067824 counts chains of divisors starting with n.
A074206 counts chains of divisors from n to 1.
A122651 counts chains of divisors summing to n.
A167865 counts chains of divisors > 1 summing to n.
A251683 counts chains of divisors from n to 1 by length.
A253249 counts nonempty chains of divisors.
A337070 counts chains of divisors starting with A006939(n).
A337256 counts chains of divisors.

Programs

  • Maple
    b:= proc(n) option remember; expand(x*(1 +
          add(b(d), d=numtheory[divisors](n) minus {n})))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n)):
    seq(T(n), n=1..50);  # Alois P. Heinz, Aug 23 2020
  • Mathematica
    chss[n_]:=Prepend[Join@@Table[Prepend[#,n]&/@chss[d],{d,Most[Divisors[n]]}],{n}];
    Table[Length[Select[chss[n],Length[#]==k&]],{n,30},{k,1+PrimeOmega[n]}]

A191161 Hypersigma(n), definition 2: sum of the divisors of n plus the recursive sum of the divisors of the proper divisors.

Original entry on oeis.org

1, 4, 5, 12, 7, 22, 9, 32, 19, 30, 13, 72, 15, 38, 37, 80, 19, 90, 21, 96, 47, 54, 25, 208, 39, 62, 65, 120, 31, 178, 33, 192, 67, 78, 65, 316, 39, 86, 77, 272, 43, 222, 45, 168, 147, 102, 49, 560, 67, 174, 97, 192, 55
Offset: 1

Views

Author

Alonso del Arte, May 26 2011

Keywords

Comments

In wanting to ensure the definition was not arbitrary, I initially thought that 1s had to stop the recursion. But as T. D. Noe showed me, this doesn't have to be the case: the 1s can be included in the recursion.

Crossrefs

Cf. A000203, A191150, A202687, A255242, A378211 (Dirichlet inverse).
Sequences that appear in the convolution formulas: A000010, A000203, A007429, A038040, A060640, A067824, A074206, A174725, A253249, A323910, A323912, A330575.

Programs

  • Mathematica
    hsTD[n_] := hsTD[n] = Module[{d = Divisors[n]}, Total[d] + Total[hsTD /@ Most[d]]]; Table[hsTD[n], {n, 100}] (* From T. D. Noe *)
  • PARI
    a(n)=sumdiv(n,d,if(dCharles R Greathouse IV, Dec 20 2011

Formula

a(n) = sigma(n) + sum_{d | n, d < n} a(d). - Charles R Greathouse IV, Dec 20 2011
From Antti Karttunen, Nov 22 2024: (Start)
Following formulas were conjectured by Sequence Machine:
For n > 1, a(n) = A191150(n) + A074206(n).
a(n) = A330575(n) + A255242(n) = 2*A255242(n) + n = 2*A330575(n) - n.
a(n) = Sum_{d|n} A330575(d).
a(n) = Sum_{d|n} d*A067824(n/d).
a(n) = Sum_{d|n} A000203(d)*A074206(n/d).
a(n) = Sum_{d|n} A007429(d)*A174725(n/d).
a(n) = Sum_{d|n} A000010(d)*A253249(n/d).
a(n) = Sum_{d|n} A038040(d)*A323912(n/d).
a(n) = Sum_{d|n} A060640(d)*A323910(n/d).
(End)

A336941 Number of strict chains of divisors starting with the superprimorial A006939(n) and ending with 1.

Original entry on oeis.org

1, 1, 8, 604, 691968, 16359233536, 10083474928244288, 195661337707783118840768, 139988400203593571474134024847360, 4231553868972506381329450624389969130848256, 6090860257621637852755610879241895108657182173073604608, 464479854191019594417264488167571483344961210693790188774166838214656
Offset: 0

Views

Author

Gus Wiseman, Aug 13 2020

Keywords

Examples

			The a(2) = 8 chains:
  12/1
  12/2/1
  12/3/1
  12/4/1
  12/6/1
  12/4/2/1
  12/6/2/1
  12/6/3/1
		

Crossrefs

A022915 is the maximal case.
A076954 can be used instead of A006939.
A336571 is the case with distinct prime multiplicities.
A336942 is the case using members of A130091.
A337070 is the version ending with any divisor of A006939(n).
A000005 counts divisors.
A074206 counts chains of divisors from n to 1.
A006939 lists superprimorials or Chernoff numbers.
A067824 counts divisor chains starting with n.
A181818 gives products of superprimorials, with complement A336426.
A253249 counts chains of divisors.
A317829 counts factorizations of superprimorials.
A336423 counts chains using A130091, with maximal case A336569.

Programs

  • Mathematica
    chern[n_]:=Product[Prime[i]^(n-i+1),{i,n}];
    chns[n_]:=If[n==1,1,Sum[chns[d],{d,Most[Divisors[n]]}]];
    Table[chns[chern[n]],{n,0,3}]
  • PARI
    a(n)={my(sig=vector(n,i,i), m=vecsum(sig)); sum(k=0, m, prod(i=1, #sig, binomial(sig[i]+k-1, k-1))*sum(r=k, m, binomial(r,k)*(-1)^(r-k)))} \\ Andrew Howroyd, Aug 30 2020

Formula

a(n) = A337070(n)/2 for n > 0.
a(n) = A074206(A006939(n)).

Extensions

Terms a(8) and beyond from Andrew Howroyd, Aug 30 2020

A342515 Number of strict partitions of n with constant (equal) first-quotients.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 3, 5, 4, 5, 5, 6, 6, 8, 8, 9, 8, 9, 9, 11, 10, 13, 11, 12, 12, 13, 14, 14, 15, 15, 16, 18, 16, 17, 17, 19, 18, 20, 20, 22, 21, 21, 23, 23, 22, 24, 23, 24, 24, 27, 25, 26, 27, 27, 27, 28, 29, 31, 29, 30, 31, 32, 33, 35, 32, 35, 33, 35, 34, 35
Offset: 0

Views

Author

Gus Wiseman, Mar 19 2021

Keywords

Comments

Also the number of reversed strict partitions of n with constant (equal) first-quotients.
The first quotients of a sequence are defined as if the sequence were an increasing divisor chain, so for example the quotients of (6,3,1) are (1/2,1/3).

Examples

			The a(1) = 1 through a(15) = 9 partitions (A..F = 10..15):
  1   2   3    4    5    6    7     8    9    A    B    C    D     E     F
          21   31   32   42   43    53   54   64   65   75   76    86    87
                    41   51   52    62   63   73   74   84   85    95    96
                              61    71   72   82   83   93   94    A4    A5
                              421        81   91   92   A2   A3    B3    B4
                                                   A1   B1   B2    C2    C3
                                                             C1    D1    D2
                                                             931   842   E1
                                                                         8421
		

Crossrefs

The version for differences instead of quotients is A049980.
The non-strict ordered version is A342495.
The non-strict version is A342496.
The distinct instead of equal version is A342520.
A000005 counts constant partitions.
A000041 counts partitions (strict: A000009).
A001055 counts factorizations (strict: A045778, ordered: A074206).
A003238 counts chains of divisors summing to n - 1 (strict: A122651).
A154402 counts partitions with adjacent parts x = 2y.
A167865 counts strict chains of divisors > 1 summing to n.
A175342 counts compositions with equal differences.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&SameQ@@Divide@@@Partition[#,2,1]&]],{n,0,30}]
Previous Showing 31-40 of 75 results. Next