cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A286558 Ordinal transform of A005811.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 3, 3, 4, 2, 1, 3, 5, 4, 6, 4, 7, 5, 2, 6, 3, 1, 4, 7, 8, 8, 5, 9, 9, 10, 10, 5, 11, 11, 6, 12, 7, 2, 8, 13, 9, 3, 1, 4, 10, 5, 11, 14, 12, 15, 12, 16, 13, 6, 14, 17, 13, 18, 15, 19, 14, 20, 15, 6, 16, 21, 16, 22, 17, 7, 18, 23, 19, 8, 2, 9, 20, 10, 21, 24, 22, 11, 3, 12, 4, 1, 5, 13, 23, 14, 6, 15, 24, 16, 25, 25, 17, 26, 26, 27, 27, 17, 28, 28
Offset: 0

Views

Author

Antti Karttunen, May 21 2017

Keywords

Crossrefs

Cf. A005811.
Cf. A263017, A254524, A286478, A286554 for similar sequences.

A326307 a(n) is the index of n in the ordered list of the numbers with the same digits as n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2
Offset: 0

Views

Author

David A. Corneth, Oct 17 2019

Keywords

Comments

Ordinal transform of A328447.

Examples

			a(321) = 6 as 321 is the sixth number made of the digits [1, 2, 3]. The five smaller numbers having these digits are 123, 132, 213, 231, 312.
		

Crossrefs

Programs

  • PARI
    see Corneth link
    
  • PARI
    { o = vector(100); for (n=0, 87, print1 (o[1+fromdigits(vecsort(digits(n,base=10),,4),base)]++ ", ")) } \\ Rémy Sigrist, Oct 17 2019
    
  • PARI
    A326307(n,D=Vecsmall(digits(n)),c=1)={forperm(vecsort(D),d, d==D&&break; d[1]&&c++);c} \\ M. F. Hasler, May 19 2021
    
  • Python
    from collections import Counter
    from itertools import count, islice
    def agen(): # generator of terms
        digmultisetcount = Counter()
        for n in count(0):
            key = "".join(sorted(str(n)))
            digmultisetcount[key] += 1
            yield digmultisetcount[key]
    print(list(islice(agen(), 88))) # Michael S. Branicky, Jan 30 2025

Formula

a(A179239(n)) = 1.
a(10+n) = A007953(9*n)/9 (A007953 = sum of digits) for 0 < n < 91, but a(101) = 1 while A007953(9*91)/9 = 2. - M. F. Hasler, May 19 2021

Extensions

Edited by N. J. A. Sloane, Oct 24 2019

A335286 n is the a(n)-th positive integer having its sequence of exponents in canonical prime factorization.

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 4, 1, 2, 2, 5, 1, 6, 3, 4, 1, 7, 1, 8, 2, 5, 6, 9, 1, 3, 7, 2, 3, 10, 1, 11, 1, 8, 9, 10, 1, 12, 11, 12, 2, 13, 2, 14, 4, 5, 13, 15, 1, 4, 2, 14, 6, 16, 1, 15, 3, 16, 17, 17, 1, 18, 18, 7, 1, 19, 3, 19, 8, 20, 4, 20, 1, 21, 21, 3, 9, 22, 5, 22, 2
Offset: 1

Views

Author

David A. Corneth, May 30 2020

Keywords

Examples

			a(14) = 3 as 14 has prime signature [1, 1] and it's the third positive integer having that prime signature, after 6 and 10.
		

Crossrefs

Programs

  • Maple
    p:= proc() 0 end:
    a:= proc(n) option remember; local t; a(n-1); t:=
          (l-> mul(ithprime(i)^l[i][2], i=1..nops(l)
           ))(sort(ifactors(n)[2])); p(t):= p(t)+1
        end: a(0):=0:
    seq(a(n), n=1..100);  # Alois P. Heinz, Jun 01 2020
  • Mathematica
    A071364[n_] := If[n == 1, 1, With[{f = FactorInteger[n]}, Times @@ (Prime[Range[Length[f]]]^f[[All, 2]])]];
    Module[{b}, b[_] = 0;
    a[n_] := With[{t = A071364[n]}, b[t] = b[t] + 1]];
    Array[a, 105] (* Jean-François Alcover, Jan 10 2022 *)
  • PARI
    first(n) = { my(m = Map(), res = vector(n)); for(i = 1, n, c = factor(i)[,2]; if(mapisdefined(m, c), res[i] = mapget(m, c) + 1; mapput(m, c, res[i]) , res[i] = 1; mapput(m, c, 1) ) ); res }

Formula

Ordinal transform of A071364. - Alois P. Heinz, Jun 01 2020

A263019 If n is the i-th positive integer with digital sum j, then a(n) is the j-th positive integer with digital sum i.

Original entry on oeis.org

1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 2, 11, 20, 101, 110, 200, 1001, 1010, 1100, 1000000000, 12, 21, 30, 102, 111, 120, 201, 210, 2000, 10000000000, 22, 31, 40, 103, 112, 121, 130, 300, 10001, 100000000000, 32, 41, 50, 104, 113, 122
Offset: 1

Views

Author

Paul Tek, Oct 07 2015

Keywords

Comments

Digital sum is given by A007953.
This is a self-inverse permutation of the natural numbers, with fixed points A081927.
A007953(n) = A081927(a(n)) for any n>0.
A081927(n) = A007953(a(n)) for any n>0.
a(A051885(n)) = 10^(n-1) for any n>0.
a(10^(n-1)) = A051885(n) for any n>0.

Crossrefs

Programs

  • PARI
    a(n) = {j = sumdigits(n); v = vector(n, k, sumdigits(k)); i = #select(x->x==j, v); nb = 0; k = 0; while(nb != j, k++; if (sumdigits(k) == i, nb++)); k;} \\ Michel Marcus, Oct 16 2015

A338505 Number of positive integers less than n with the same product of decimal digits as n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 0, 0, 0, 0, 0, 2, 2, 3, 2, 1, 0, 1, 0, 0, 0, 3, 3, 3, 2, 1, 0, 1, 0, 0, 0, 4, 2, 1, 1, 1, 0, 0, 0, 0, 0, 5, 4, 3, 2, 2, 1, 1, 0, 0, 0, 6, 2, 1, 1, 1, 1, 1, 0, 0, 0, 7, 4, 2, 3, 1, 1, 1, 1, 0, 0, 8
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 31 2020

Keywords

Examples

			a(22) = 2 because A007954(22) = 4 and also A007954(4) = A007954(14) = 4.
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Range[n - 1], Times @@ IntegerDigits@# == Times @@ IntegerDigits@n &]], {n, 90}]
  • PARI
    a(n)={my(t=vecprod(digits(n))); sum(k=1, n-1, vecprod(digits(k))==t)} \\ Andrew Howroyd, Oct 31 2020

Formula

a(n) = |{0 < j < n : A007954(j) = A007954(n)}|.

Extensions

Definition clarified by Ilya Gutkovskiy, Apr 14 2022

A340294 a(n) = pi(A340063(n)) = A000720(A340063(n)) for prime A340063(n) and otherwise k such that A340063 is the k-th positive integer having its digitsum.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 3, 4, 1, 5, 5, 6, 2, 4, 7, 6, 8, 3, 5, 9, 1, 10, 7, 11, 2, 6, 12, 3, 13, 8, 14, 4, 7, 15, 2, 16, 3, 17, 9, 18, 4, 8, 19, 5, 20, 10, 21, 4, 22, 5, 9, 23, 5, 24, 1, 25, 6, 10, 26, 11, 27, 7, 28, 12, 29, 7, 11, 30, 1, 6, 31, 8, 32, 6, 33, 13, 34, 2
Offset: 1

Views

Author

David A. Corneth, Jan 03 2021

Keywords

Examples

			a(17) = 8 as A340063(17) = 19 which is the 8th prime.
a(25) = 2 as A340063(25) = 14 which is composite and 14 is the second positive integer with digitsum 5.
		

Crossrefs

A357526 Number of nonnegative integers less than n with the same product of the nonzero decimal digits as n.

Original entry on oeis.org

0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 2, 2, 2, 0, 0, 0, 0, 0, 2, 3, 3, 2, 1, 0, 1, 0, 0, 0, 3, 4, 3, 2, 1, 0, 1, 0, 0, 0, 2, 3, 1, 1, 1, 0, 0, 0, 0, 0, 4, 5, 3, 2, 2, 1, 1, 0, 0, 0, 2, 3, 1, 1, 1, 1, 1, 0, 0, 0, 4, 5, 2, 3, 1, 1, 1, 1, 0, 0, 3
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 02 2022

Keywords

Examples

			a(1) = 1 because A051801(1) = 1 and also A051801(0) = 1.
a(21) = 3 because A051801(21) = 2 and also A051801(2) = A051801(12) = A051801(20) = 2.
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Range[0, n - 1], Times @@ DeleteCases[IntegerDigits[#], 0] == Times @@ DeleteCases[IntegerDigits[n], 0] &]], {n, 0, 90}]

Formula

a(n) = |{j < n : A051801(j) = A051801(n)}|.

A385957 Prime(n) is the a(n)-th prime having its distinct digits.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 2, 3, 1, 2, 1, 2, 3, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 5, 6, 3, 7, 3, 1, 1, 2, 1, 1, 4, 1, 2, 1, 2, 1, 1, 2, 2, 1, 2, 2, 3, 1, 1
Offset: 1

Views

Author

David A. Corneth, Jul 13 2025

Keywords

Examples

			a(1) = 1 as prime(1) = 2 is the first prime having its distinct digits {2}.
a(11) = 2 as prime(11) = 31 is the second prime having its disitinct digits {1, 3} (the first is 13).
a(32) = 4 as prime(32) = 131 is the fourth prime having its distinct digits {1, 3} (the first three are 13, 31 and 113).
		

Crossrefs

Programs

  • Mathematica
    Block[{c, f, p}, c[] := 0; f[x] := Union@ IntegerDigits[x]; Reap[Do[p = Prime[n]; Sow[++c[f[p] ] ], {n, 120}] ][[-1, 1]] ] (* Michael De Vlieger, Jul 13 2025 *)
  • PARI
    \\ See Corneth link
Previous Showing 11-18 of 18 results.