A320461
MM-numbers of labeled graphs with loops spanning an initial interval of positive integers.
Original entry on oeis.org
1, 7, 13, 91, 161, 299, 329, 377, 611, 667, 1261, 1363, 1937, 2021, 2093, 2117, 2639, 4277, 4669, 7567, 8671, 8827, 9541, 13559, 14053, 14147, 14819, 15617, 16211, 17719, 23989, 24017, 26273, 27521, 28681, 29003, 31349, 31913, 36569, 44551, 44603, 46483, 48691
Offset: 1
The sequence of terms together with their multiset multisystems begins:
1: {}
7: {{1,1}}
13: {{1,2}}
91: {{1,1},{1,2}}
161: {{1,1},{2,2}}
299: {{2,2},{1,2}}
329: {{1,1},{2,3}}
377: {{1,2},{1,3}}
611: {{1,2},{2,3}}
667: {{2,2},{1,3}}
1261: {{3,3},{1,2}}
1363: {{1,3},{2,3}}
1937: {{1,2},{3,4}}
2021: {{1,4},{2,3}}
2093: {{1,1},{2,2},{1,2}}
2117: {{1,3},{2,4}}
2639: {{1,1},{1,2},{1,3}}
4277: {{1,1},{1,2},{2,3}}
4669: {{1,1},{2,2},{1,3}}
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
normQ[sys_]:=Or[Length[sys]==0,Union@@sys==Range[Max@@Max@@sys]];
Select[Range[10000],And[SquareFreeQ[#],normQ[primeMS/@primeMS[#]],And@@(Length[primeMS[#]]==2&/@primeMS[#])]&]
A317532
Regular triangle read by rows: T(n,k) is the number of multiset partitions of normal multisets of size n into k blocks, where a multiset is normal if it spans an initial interval of positive integers.
Original entry on oeis.org
1, 2, 2, 4, 8, 4, 8, 34, 26, 8, 16, 124, 168, 76, 16, 32, 448, 962, 674, 208, 32, 64, 1568, 5224, 5344, 2392, 544, 64, 128, 5448, 27336, 39834, 24578, 7816, 1376, 128, 256, 18768, 139712, 283864, 236192, 99832, 24048, 3392, 256, 512, 64448, 702496, 1960320, 2161602, 1186866, 370976, 70656, 8192, 512
Offset: 1
The T(3,2) = 8 multiset partitions:
{{1},{1,1}}
{{1},{2,2}}
{{2},{1,2}}
{{1},{1,2}}
{{2},{1,1}}
{{1},{2,3}}
{{2},{1,3}}
{{3},{1,2}}
Triangle begins:
1
2 2
4 8 4
8 34 26 8
16 124 168 76 16
32 448 962 674 208 32
...
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
allnorm[n_]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1];
Table[Length[Select[Join@@mps/@allnorm[n],Length[#]==k&]],{n,7},{k,n}]
-
\\ here B(n,k) is A239473(n,k).
B(n,k)={sum(r=k, n, binomial(r, k)*(-1)^(r-k))}
Row(n)={Vecrev(sum(j=1, n, B(n,j)*polcoef(1/prod(k=1, n, (1 - x^k*y + O(x*x^n))^binomial(k+j-1,j-1)), n))/y)}
{ for(n=1, 10, print(Row(n))) } \\ Andrew Howroyd, Dec 31 2019
A318566
Number of non-isomorphic multiset partitions of multiset partitions of multisets of size n.
Original entry on oeis.org
1, 6, 21, 104, 452, 2335, 11992, 66810, 385101, 2336352, 14738380, 96831730, 659809115, 4657075074, 33974259046, 255781455848, 1984239830571, 15839628564349, 129951186405574, 1094486382191624, 9453318070371926, 83654146992936350, 757769011659766015, 7020652591448497490
Offset: 1
Non-isomorphic representatives of the a(3) = 21 multiset partitions of multiset partitions:
{{{1,1,1}}}
{{{1,1,2}}}
{{{1,2,3}}}
{{{1},{1,1}}}
{{{1},{1,2}}}
{{{1},{2,3}}}
{{{2},{1,1}}}
{{{1},{1},{1}}}
{{{1},{1},{2}}}
{{{1},{2},{3}}}
{{{1}},{{1,1}}}
{{{1}},{{1,2}}}
{{{1}},{{2,3}}}
{{{2}},{{1,1}}}
{{{1}},{{1},{1}}}
{{{1}},{{1},{2}}}
{{{1}},{{2},{3}}}
{{{2}},{{1},{1}}}
{{{1}},{{1}},{{1}}}
{{{1}},{{1}},{{2}}}
{{{1}},{{2}},{{3}}}
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
dubnorm[m_]:=First[Union[Table[Map[Sort,m/.Rule@@@Table[{Union[Flatten[m]][[i]],Union[Flatten[m]][[perm[[i]]]]},{i,Length[perm]}],{0,2}],{perm,Permutations[Union[Flatten[m]]]}]]];
Table[Length[Union[dubnorm/@Join@@mps/@Join@@mps/@strnorm[n]]],{n,5}]
-
\\ See links in A339645 for combinatorial species functions.
seq(n)={my(A=sExp(symGroupSeries(n))); NumUnlabeledObjsSeq(sCartProd(A, sExp(A)-1))} \\ Andrew Howroyd, Dec 30 2020
A317752
Number of multiset partitions of normal multisets of size n such that the blocks have empty intersection.
Original entry on oeis.org
0, 1, 8, 49, 305, 1984, 13686, 100124, 776885, 6386677, 55532358, 509549386, 4921352952, 49899820572, 529807799836, 5876162077537, 67928460444139, 816764249684450, 10195486840926032, 131896905499007474, 1765587483656124106, 24419774819813602870
Offset: 1
The a(3) = 8 multiset partitions with empty intersection:
{{2},{1,1}}
{{1},{2,2}}
{{1},{2,3}}
{{2},{1,3}}
{{3},{1,2}}
{{1},{1},{2}}
{{1},{2},{2}}
{{1},{2},{3}}
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
allnorm[n_]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1];
Table[Length[Join@@Table[Select[mps[m],Intersection@@#=={}&],{m,allnorm[n]}]],{n,6}]
-
P(n,k)={1/prod(i=1, n, (1 - x^i*y + O(x*x^n))^binomial(k+i-1, k-1))}
R(n,k)={my(p=P(n,k), q=p/(1-y+O(y*y^n))); Vec(sum(i=2, n, polcoef(p,i,y) + polcoef(q,i,y)*sum(j=1, n\i, (-1)^j*binomial(k,j)*x^(i*j))), -n)}
seq(n)={sum(k=2, n, R(n, k)*sum(r=k, n, binomial(r, k)*(-1)^(r-k)) )} \\ Andrew Howroyd, Feb 05 2021
A317755
Number of multiset partitions of strongly normal multisets of size n such that the blocks have empty intersection.
Original entry on oeis.org
0, 1, 6, 30, 130, 629, 2930, 15019, 78224, 438626, 2548481
Offset: 1
The a(3) = 6 strongly normal multiset partitions with empty intersection:
{{2},{1,1}}
{{1},{2,3}}
{{2},{1,3}}
{{3},{1,2}}
{{1},{1},{2}}
{{1},{2},{3}}
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
Table[Length[Join@@Table[Select[mps[m],Intersection@@#=={}&],{m,strnorm[n]}]],{n,6}]
A317583
Number of multiset partitions of normal multisets of size n such that all blocks have the same size.
Original entry on oeis.org
1, 4, 8, 30, 32, 342, 128, 3754, 11360, 56138, 2048, 3834670, 8192, 27528494, 577439424, 2681075210, 131072, 238060300946, 524288, 11045144602614, 115488471132032, 49840258213638, 8388608, 152185891301461434, 140102945910265344, 124260001149229146, 85092642310351607968
Offset: 1
The a(3) = 8 multiset partitions:
{{1,1,1}}
{{1,1,2}}
{{1,2,2}}
{{1,2,3}}
{{1},{1},{1}}
{{1},{1},{2}}
{{1},{2},{2}}
{{1},{2},{3}}
Cf.
A038041,
A255906,
A298422,
A306017,
A306019,
A306020,
A306021,
A320324,
A322794,
A326517,
A326518,
A326519,
A326520,
A326521,
A331315.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
allnorm[n_]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1];
Table[Length[Select[Join@@mps/@allnorm[n],SameQ@@Length/@#&]],{n,8}]
-
\\ here U(n,m) gives number for m blocks of size n.
U(n,m)={sum(k=1, n*m, binomial(binomial(k+n-1, n)+m-1, m)*sum(r=k, n*m, binomial(r, k)*(-1)^(r-k)) )}
a(n)={sumdiv(n, d, U(d, n/d))} \\ Andrew Howroyd, Sep 15 2018
A326517
Number of normal multiset partitions of weight n where each part has a different size.
Original entry on oeis.org
1, 1, 2, 12, 28, 140, 956, 3520, 17792, 111600, 1144400, 4884064, 34907936, 214869920, 1881044032, 25687617152, 139175009920, 1098825972608, 8770328141888, 74286112885504, 784394159958848, 15114871659653952, 92392468773724544, 889380453354852416, 7652770202041529856
Offset: 0
The a(0) = 1 through a(3) = 12 normal multiset partitions:
{} {{1}} {{1,1}} {{1,1,1}}
{{1,2}} {{1,1,2}}
{{1,2,2}}
{{1,2,3}}
{{1},{1,1}}
{{1},{1,2}}
{{1},{2,2}}
{{1},{2,3}}
{{2},{1,1}}
{{2},{1,2}}
{{2},{1,3}}
{{3},{1,2}}
Cf.
A007837,
A038041,
A255906,
A317583,
A326026,
A326514,
A326518,
A326519,
A326520,
A326521,
A326533.
-
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(b(n-i*j, i-1, k)*binomial(i+k-1, k-1)^j, j=0..min(1, n/i))))
end:
a:= n->add(add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..n), k=0..n):
seq(a(n), n=0..25); # Alois P. Heinz, Sep 23 2023
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
Table[Length[Select[Join@@mps/@allnorm[n],UnsameQ@@Length/@#&]],{n,0,6}]
-
R(n, k)={Vec(prod(j=1, n, 1 + binomial(k+j-1, j)*x^j + O(x*x^n)))}
seq(n)={sum(k=0, n, R(n, k)*sum(r=k, n, binomial(r, k)*(-1)^(r-k)))} \\ Andrew Howroyd, Feb 07 2020
A055884
Euler transform of partition triangle A008284.
Original entry on oeis.org
1, 1, 2, 1, 2, 3, 1, 4, 4, 5, 1, 4, 8, 7, 7, 1, 6, 12, 16, 12, 11, 1, 6, 17, 25, 28, 19, 15, 1, 8, 22, 43, 49, 48, 30, 22, 1, 8, 30, 58, 87, 88, 77, 45, 30, 1, 10, 36, 87, 134, 167, 151, 122, 67, 42, 1, 10, 45, 113, 207, 270, 296, 247, 185, 97, 56, 1, 12, 54, 155, 295, 448, 510, 507, 394, 278, 139, 77
Offset: 1
From _Gus Wiseman_, Nov 09 2018: (Start)
Triangle begins:
1
1 2
1 2 3
1 4 4 5
1 4 8 7 7
1 6 12 16 12 11
1 6 17 25 28 19 15
1 8 22 43 49 48 30 22
1 8 30 58 87 88 77 45 30
...
The fifth row {1, 4, 8, 7, 7} counts the following multiset partitions:
{{5}} {{1,4}} {{1,1,3}} {{1,1,1,2}} {{1,1,1,1,1}}
{{2,3}} {{1,2,2}} {{1},{1,1,2}} {{1},{1,1,1,1}}
{{1},{4}} {{1},{1,3}} {{1,1},{1,2}} {{1,1},{1,1,1}}
{{2},{3}} {{1},{2,2}} {{2},{1,1,1}} {{1},{1},{1,1,1}}
{{2},{1,2}} {{1},{1},{1,2}} {{1},{1,1},{1,1}}
{{3},{1,1}} {{1},{2},{1,1}} {{1},{1},{1},{1,1}}
{{1},{1},{3}} {{1},{1},{1},{2}} {{1},{1},{1},{1},{1}}
{{1},{2},{2}}
(End)
-
h:= proc(n, i) option remember; expand(`if`(n=0, 1,
`if`(i<1, 0, h(n, i-1)+x*h(n-i, min(n-i, i)))))
end:
g:= proc(n, i, j) option remember; expand(`if`(j=0, 1, `if`(i<0, 0, add(
g(n, i-1, j-k)*x^(i*k)*binomial(coeff(h(n$2), x, i)+k-1, k), k=0..j))))
end:
b:= proc(n, i) option remember; expand(`if`(n=0, 1,
`if`(i<1, 0, add(b(n-i*j, i-1)*g(i$2, j), j=0..n/i))))
end:
T:= (n, k)-> coeff(b(n$2), x, k):
seq(seq(T(n,k), k=1..n), n=1..12); # Alois P. Heinz, Feb 17 2023
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
Table[Length[Join@@mps/@IntegerPartitions[n,{k}]],{n,5},{k,n}] (* Gus Wiseman, Nov 09 2018 *)
A318565
Number of multiset partitions of multiset partitions of strongly normal multisets of size n.
Original entry on oeis.org
1, 6, 27, 169, 1029, 7817, 61006, 547537, 5202009, 54506262, 606311524, 7299051826, 92985064466, 1264720212352, 18137495642192, 275078184766323, 4379514178076452, 73235806332442156, 1280229713195027792, 23381809052104639236, 444740694108284116235, 8801030741502964613534
Offset: 1
The a(2) = 6 multiset partitions of multiset partitions:
{{{1,1}}}
{{{1,2}}}
{{{1},{1}}}
{{{1},{2}}}
{{{1}},{{1}}}
{{{1}},{{2}}}
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
Table[Sum[Length[mps[m]],{m,Join@@mps/@strnorm[n]}],{n,6}]
-
\\ See links in A339645 for combinatorial species functions.
seq(n)={my(A=symGroupSeries(n)); StronglyNormalLabelingsSeq(sExp(sExp(A))-1)} \\ Andrew Howroyd, Dec 30 2020
A326211
Number of unsortable normal multiset partitions of weight n.
Original entry on oeis.org
0, 0, 0, 1, 17, 170, 1455, 11678, 92871, 752473
Offset: 0
The a(3) = 1 and a(4) = 17 multiset partitions:
{{1,3},{2}} {{1,1,3},{2}}
{{1,2},{1,2}}
{{1,2},{1,3}}
{{1,2,3},{2}}
{{1,2,4},{3}}
{{1,3},{2,2}}
{{1,3},{2,3}}
{{1,3},{2,4}}
{{1,3,3},{2}}
{{1,3,4},{2}}
{{1,4},{2,3}}
{{1},{1,3},{2}}
{{1},{2,4},{3}}
{{1,3},{2},{2}}
{{1,3},{2},{3}}
{{1,3},{2},{4}}
{{1,4},{2},{3}}
Unsortable set partitions are
A058681.
Sortable normal multiset partitions are
A326212.
Non-crossing normal multiset partitions are
A324171.
MM-numbers of unsortable multiset partitions are
A326258.
-
lexsort[f_,c_]:=OrderedQ[PadRight[{f,c}]];
allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
Table[Length[Select[Sort[#,lexsort]&/@Join@@mps/@allnorm[n],!OrderedQ[Join@@#]&]],{n,0,5}]
Comments