cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 99 results. Next

A382216 Number of normal multisets of size n that can be partitioned into a set of sets with distinct sums.

Original entry on oeis.org

1, 1, 1, 3, 5, 11, 23, 48, 101, 208, 434
Offset: 0

Views

Author

Gus Wiseman, Mar 29 2025

Keywords

Comments

We call a multiset normal iff it covers an initial interval of positive integers. The size of a multiset is the number of elements, counting multiplicity.

Examples

			The multiset {1,2,2,3,3} can be partitioned into a set of sets with distinct sums in 4 ways:
  {{2,3},{1,2,3}}
  {{2},{3},{1,2,3}}
  {{2},{1,3},{2,3}}
  {{1},{2},{3},{2,3}}
so is counted under a(5).
The multisets counted by A382214 but not by A382216 are:
  {1,1,1,1,2,2,3,3,3}
  {1,1,2,2,2,2,3,3,3}
The a(1) = 1 through a(5) = 11 multisets:
  {1}  {1,2}  {1,1,2}  {1,1,2,2}  {1,1,1,2,3}
              {1,2,2}  {1,1,2,3}  {1,1,2,2,3}
              {1,2,3}  {1,2,2,3}  {1,1,2,3,3}
                       {1,2,3,3}  {1,1,2,3,4}
                       {1,2,3,4}  {1,2,2,2,3}
                                  {1,2,2,3,3}
                                  {1,2,2,3,4}
                                  {1,2,3,3,3}
                                  {1,2,3,3,4}
                                  {1,2,3,4,4}
                                  {1,2,3,4,5}
		

Crossrefs

Twice-partitions of this type are counted by A279785, without distinct sums A358914.
Factorizations of this type are counted by A381633, without distinct sums A050326.
Normal multiset partitions of this type are counted by A381718, A116539.
The complement is counted by A382202.
Without distinct sums we have A382214, complement A292432.
The case of a unique choice is counted by A382459, without distinct sums A382458.
For Heinz numbers: A293243, A381806, A382075, A382200.
For integer partitions: A381990, A381992, A382077, A382078.
Strong version: A382523, A382430, A381996, A292444.
Normal multiset partitions: A034691, A035310, A255906.
Set systems: A050342, A296120, A318361.
Set multipartitions: A089259, A270995, A296119, A318360.

Programs

  • Mathematica
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[mset_]:=Union[Sort[Sort/@(#/.x_Integer:>mset[[x]])]&/@sps[Range[Length[mset]]]];
    Table[Length[Select[allnorm[n],Length[Select[mps[#],And@@UnsameQ@@@#&&UnsameQ@@Total/@#&]]>0&]],{n,0,5}]

A317658 Number of positions in the n-th free pure symmetric multifunction (with empty expressions allowed) with one atom.

Original entry on oeis.org

1, 2, 3, 3, 4, 4, 5, 4, 4, 5, 6, 5, 5, 6, 7, 4, 6, 6, 7, 8, 5, 7, 7, 8, 5, 9, 5, 6, 8, 8, 9, 5, 6, 10, 6, 5, 7, 9, 9, 10, 6, 7, 11, 7, 6, 8, 10, 10, 6, 11, 7, 8, 12, 8, 7, 9, 11, 11, 7, 12, 8, 9, 13, 5, 9, 8, 10, 12, 12, 8, 13, 9, 10, 14, 6, 10, 9, 11, 13, 13
Offset: 1

Views

Author

Gus Wiseman, Aug 03 2018

Keywords

Comments

Given a positive integer n > 1 we construct a unique free pure symmetric multifunction e(n) by expressing n as a power of a number that is not a perfect power to a product of prime numbers: n = rad(x)^(prime(y_1) * ... * prime(y_k)) where rad = A007916. Then e(n) = e(x)[e(y_1), ..., e(y_k)].
Also the number of positions in the orderless Mathematica expression with e-number n.

Examples

			The first twenty Mathematica expressions:
   1: o
   2: o[]
   3: o[][]
   4: o[o]
   5: o[][][]
   6: o[o][]
   7: o[][][][]
   8: o[o[]]
   9: o[][o]
  10: o[o][][]
  11: o[][][][][]
  12: o[o[]][]
  13: o[][o][]
  14: o[o][][][]
  15: o[][][][][][]
  16: o[o,o]
  17: o[o[]][][]
  18: o[][o][][]
  19: o[o][][][][]
  20: o[][][][][][][]
		

Crossrefs

First differs from A277615 at a(128) = 5, A277615(128) = 6.

Programs

  • Mathematica
    nn=100;
    radQ[n_]:=If[n===1,False,GCD@@FactorInteger[n][[All,2]]===1];
    rad[n_]:=rad[n]=If[n===0,1,NestWhile[#+1&,rad[n-1]+1,Not[radQ[#]]&]];
    Clear[radPi];Set@@@Array[radPi[rad[#]]==#&,nn];
    exp[n_]:=If[n===1,x,With[{g=GCD@@FactorInteger[n][[All,2]]},Apply[exp[radPi[Power[n,1/g]]],exp/@Flatten[Cases[FactorInteger[g],{p_?PrimeQ,k_}:>ConstantArray[PrimePi[p],k]]]]]];
    Table[exp[n],{n,1,nn}]

Formula

a(rad(x)^(prime(y_1) * ... * prime(y_k))) = a(x) + a(y_1) + ... + a(y_k).
e(2^(2^n)) = o[o,...,o].
e(2^prime(2^prime(2^...))) = o[o[...o[o]]].
e(rad(rad(rad(...)^2)^2)^2) = o[o][o]...[o].

A318564 Number of multiset partitions of multiset partitions of normal multisets of size n.

Original entry on oeis.org

1, 6, 36, 274, 2408, 24440, 279172, 3542798, 49354816, 747851112, 12231881948, 214593346534, 4016624367288, 79843503990710, 1678916979373760, 37215518578700028, 866953456654946948, 21167221410812128266, 540346299720320080828, 14390314687100383124540, 399023209689817997883900
Offset: 1

Views

Author

Gus Wiseman, Aug 29 2018

Keywords

Comments

A multiset is normal if it spans an initial interval of positive integers.

Examples

			The a(2) = 6 multiset partitions of multiset partitions:
  {{{1,1}}}
  {{{1,2}}}
  {{{1},{1}}}
  {{{1},{2}}}
  {{{1}},{{1}}}
  {{{1}},{{2}}}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    Table[Sum[Length[mps[m]],{m,Join@@mps/@allnorm[n]}],{n,6}]
  • PARI
    \\ See links in A339645 for combinatorial species functions.
    seq(n)={my(A=symGroupSeries(n)); NormalLabelingsSeq(sExp(sExp(A))-1)} \\ Andrew Howroyd, Jan 01 2021

Extensions

Terms a(8) and beyond from Andrew Howroyd, Jan 01 2021

A318285 Number of non-isomorphic multiset partitions of a multiset whose multiplicities are the prime indices of n.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 5, 3, 7, 7, 7, 9, 11, 12, 16, 5, 15, 17, 22, 16, 29, 19, 30, 16, 21, 30, 23, 29, 42, 52, 56, 7, 47, 45, 57, 43, 77, 67, 77, 31, 101, 98, 135, 47, 85, 97, 176, 29, 66, 64, 118, 77, 231, 69, 97, 57, 181, 139, 297, 137, 385, 195, 166, 11, 162, 171, 490, 118
Offset: 1

Views

Author

Gus Wiseman, Aug 23 2018

Keywords

Examples

			Non-isomorphic representatives of the a(12) = 9 multiset partitions of {1,1,2,3}:
  {{1,1,2,3}}
  {{1},{1,2,3}}
  {{2},{1,1,3}}
  {{1,1},{2,3}}
  {{1,2},{1,3}}
  {{1},{1},{2,3}}
  {{1},{2},{1,3}}
  {{2},{3},{1,1}}
  {{1},{1},{2},{3}}
		

Crossrefs

Programs

  • PARI
    \\ See links in A339645 for combinatorial species functions.
    sig(n)={my(f=factor(n), sig=vector(primepi(vecmax(f[,1])))); for(i=1, #f~, sig[primepi(f[i,1])]=f[i,2]); sig}
    C(sig)={my(n=sum(i=1, #sig, i*sig[i]), A=Vec(symGroupSeries(n)-1), B=O(x*x^n), c=prod(i=1, #sig, if(sig[i], sApplyCI(A[sig[i]], sig[i], A[i], i), 1))); polcoef(OgfSeries(sCartProd(c*x^n + B, sExp(x*Ser(A) + B))), n)}
    a(n)={if(n==1, 1, C(sig(n)))} \\ Andrew Howroyd, Jan 17 2023

Formula

a(n) = A317791(A181821(n)).

Extensions

Terms a(31) and beyond from Andrew Howroyd, Jan 17 2023

A324171 Number of non-crossing multiset partitions of normal multisets of size n.

Original entry on oeis.org

1, 1, 4, 16, 75, 378, 2042, 11489, 66697
Offset: 0

Views

Author

Gus Wiseman, Feb 17 2019

Keywords

Comments

A multiset is normal if its union is an initial interval of positive integers.
A multiset partition is crossing if it has a 2-element submultiset of the form {{...x...y...}, {...z...t...}} where x < z < y < t or z < x < t < y.

Examples

			The A255906(5) - a(5) = 22 crossing multiset partitions:
  {{13}{124}}  {{1}{13}{24}}
  {{13}{224}}  {{1}{24}{35}}
  {{13}{234}}  {{2}{13}{24}}
  {{13}{244}}  {{2}{14}{35}}
  {{13}{245}}  {{3}{13}{24}}
  {{14}{235}}  {{3}{14}{25}}
  {{24}{113}}  {{4}{13}{24}}
  {{24}{123}}  {{4}{13}{25}}
  {{24}{133}}  {{5}{13}{24}}
  {{24}{134}}
  {{24}{135}}
  {{25}{134}}
  {{35}{124}}
		

Crossrefs

Cf. A000108 (non-crossing set partitions), A000124, A001006, A001055, A001263, A007297, A054726 (non-crossing graphs), A099947, A194560, A255906 (multiset partitions of normal multisets), A306438.

Programs

  • Mathematica
    nonXQ[stn_]:=!MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    Table[Sum[Length[Select[mps[m],nonXQ]],{m,allnorm[n]}],{n,0,8}]

A382214 Number of normal multisets of size n that can be partitioned into a set of sets.

Original entry on oeis.org

1, 1, 1, 3, 5, 11, 23, 48, 101, 210, 436, 894
Offset: 0

Views

Author

Gus Wiseman, Mar 29 2025

Keywords

Comments

First differs from A382216 at a(9) = 210, A382216(9) = 208.
We call a multiset or multiset partition normal iff it covers an initial interval of positive integers. The size of a multiset is the number of elements, counting multiplicity.

Examples

			The normal multiset {1,1,1,1,2,2,3,3,3} has partition {{1},{3},{1,2},{1,3},{1,2,3}}, so is counted under a(9).
The a(1) = 1 through a(5) = 11 multisets:
  {1}  {1,2}  {1,1,2}  {1,1,2,2}  {1,1,1,2,3}
              {1,2,2}  {1,1,2,3}  {1,1,2,2,3}
              {1,2,3}  {1,2,2,3}  {1,1,2,3,3}
                       {1,2,3,3}  {1,1,2,3,4}
                       {1,2,3,4}  {1,2,2,2,3}
                                  {1,2,2,3,3}
                                  {1,2,2,3,4}
                                  {1,2,3,3,3}
                                  {1,2,3,3,4}
                                  {1,2,3,4,4}
                                  {1,2,3,4,5}
		

Crossrefs

Factorizations of this type are counted by A050326, distinct sums A381633.
Normal multiset partitions of this type are counted by A116539, distinct sums A381718.
The complement is counted by A292432.
Twice-partitions of this type are counted by A358914, distinct sums A279785.
The strong version is A381996, complement A292444.
For integer partitions we have A382077, ranks A382200, complement A382078, ranks A293243.
For distinct sums we have A382216, complement A382202.
The case of a unique choice is counted by A382458, distinct sums A382459.
A000670 counts patterns, ranked by A055932 and A333217, necklace A019536.
A001055 count factorizations, strict A045778.
Normal multiset partitions: A034691, A035310, A255906.
Set systems: A050342, A296120, A318361.
Set multipartitions: A089259, A270995, A296119, A318360.

Programs

  • Mathematica
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]] /@ Subsets[Range[n-1]+1]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[mset_]:=Union[Sort[Sort/@(#/.x_Integer:>mset[[x]])]& /@ sps[Range[Length[mset]]]];
    Table[Length[Select[allnorm[n],Select[mps[#], UnsameQ@@#&&And@@UnsameQ@@@#&]!={}&]],{n,0,5}]

A320458 MM-numbers of labeled simple graphs spanning an initial interval of positive integers.

Original entry on oeis.org

1, 13, 377, 611, 1363, 1937, 2021, 2117, 16211, 17719, 26273, 27521, 44603, 56173, 58609, 83291, 91031, 91039, 99499, 141401, 143663, 146653, 147533, 153023, 159659, 167243, 170839, 203087, 237679, 243893, 265369, 271049, 276877, 290029, 301129, 315433, 467711
Offset: 1

Views

Author

Gus Wiseman, Oct 13 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}.

Examples

			The sequence of terms together with their multiset multisystems begins:
      1: {}
     13: {{1,2}}
    377: {{1,2},{1,3}}
    611: {{1,2},{2,3}}
   1363: {{1,3},{2,3}}
   1937: {{1,2},{3,4}}
   2021: {{1,4},{2,3}}
   2117: {{1,3},{2,4}}
  16211: {{1,2},{1,3},{1,4}}
  17719: {{1,2},{1,3},{2,3}}
  26273: {{1,2},{1,4},{2,3}}
  27521: {{1,2},{1,3},{2,4}}
  44603: {{1,2},{2,3},{2,4}}
  56173: {{1,2},{1,3},{3,4}}
  58609: {{1,3},{1,4},{2,3}}
  83291: {{1,2},{1,4},{3,4}}
  91031: {{1,3},{1,4},{2,4}}
  91039: {{1,2},{2,3},{3,4}}
  99499: {{1,3},{2,3},{2,4}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    normQ[sys_]:=Or[Length[sys]==0,Union@@sys==Range[Max@@Max@@sys]];
    Select[Range[10000],And[SquareFreeQ[#],normQ[primeMS/@primeMS[#]],And@@(And[SquareFreeQ[#],Length[primeMS[#]]==2]&/@primeMS[#])]&]

A035341 Sum of ordered factorizations over all prime signatures with n factors.

Original entry on oeis.org

1, 1, 5, 25, 173, 1297, 12225, 124997, 1492765, 19452389, 284145077, 4500039733, 78159312233, 1460072616929, 29459406350773, 634783708448137, 14613962109584749, 356957383060502945, 9241222160142506097, 252390723655315856437, 7260629936987794508973
Offset: 0

Views

Author

Keywords

Comments

Let f(n) = number of ordered factorizations of n (A074206(n)); a(n) = sum of f(k) over all terms k in A025487 that have n factors.
When the unordered spectrum A035310 is so ordered the sequences A000041 A000070 ...A035098 A000110 yield A000079 A001792 ... A005649 A000670 respectively.
Row sums of A095705. - David Wasserman, Feb 22 2008
From Ludovic Schwob, Sep 23 2023: (Start)
a(n) is the number of nonnegative integer matrices with sum of entries equal to n and no zero rows or columns, with weakly decreasing row sums. The a(3) = 25 matrices:
[1 1 1] [1 2] [2 1] [3]
.
[1 1] [1 1] [1 1 0] [1 0 1] [0 1 1] [2] [0 2] [2 0]
[1 0] [0 1] [0 0 1] [0 1 0] [1 0 0] [1] [1 0] [0 1]
.
[1] [1 0] [0 1] [1 0] [0 1] [1 0 0] [1 0 0] [0 1] [1 0]
[1] [1 0] [0 1] [0 1] [1 0] [0 1 0] [0 0 1] [1 0] [0 1]
[1] [0 1] [1 0] [1 0] [0 1] [0 0 1] [0 1 0] [1 0] [0 1]
.
[0 1 0] [0 1 0] [0 0 1] [0 0 1]
[1 0 0] [0 0 1] [1 0 0] [0 1 0]
[0 0 1] [1 0 0] [0 1 0] [1 0 0] (End)

Examples

			a(3) = 25 because there are 3 terms in A025487 with 3 factors, namely 8, 12, 30; and f(8)=4, f(12)=8, f(30)=13 and 4+8+13 = 25.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(b(n-i*j, i-1, k)*binomial(i+k-1, k-1)^j, j=0..n/i)))
        end:
    a:= n->add(add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k), k=0..n):
    seq(a(n), n=0..25);  # Alois P. Heinz, Aug 29 2015
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1, k]*If[j == 0, 1, Binomial[i + k - 1, k - 1]^j], {j, 0, n/i}]]];
    a[n_] := Sum[Sum[b[n, n, k-i]*(-1)^i*Binomial[k, i], {i, 0, k}], {k, 0, n}];
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Oct 26 2015, after Alois P. Heinz, updated Dec 15 2020 *)
  • PARI
    R(n,k)=Vec(-1 + 1/prod(j=1, n, 1 - binomial(k+j-1,j)*x^j + O(x*x^n)))
    seq(n) = {concat([1], sum(k=1, n, R(n, k)*sum(r=k, n, binomial(r, k)*(-1)^(r-k)) ))} \\ Andrew Howroyd, Sep 23 2023

Formula

a(n) ~ c * n! / log(2)^n, where c = 1/(2*log(2)) * Product_{k>=2} 1/(1-1/k!) = A247551 / (2*log(2)) = 1.8246323... . - Vaclav Kotesovec, Jan 21 2017

Extensions

More terms from Erich Friedman.
More terms from David Wasserman, Feb 22 2008

A317776 Number of strict multiset partitions of normal multisets of size n, where a multiset is normal if it spans an initial interval of positive integers.

Original entry on oeis.org

1, 1, 3, 13, 59, 313, 1847, 11977, 84483, 642405, 5228987, 45297249, 415582335, 4021374193, 40895428051, 435721370413, 4850551866619, 56282199807401, 679220819360775, 8508809310177481, 110454586096508563, 1483423600240661781, 20581786429087269819
Offset: 0

Views

Author

Gus Wiseman, Aug 06 2018

Keywords

Examples

			The a(3) = 13 strict multiset partitions:
  {{1,1,1}}, {{1},{1,1}},
  {{1,2,2}}, {{1},{2,2}}, {{2},{1,2}},
  {{1,1,2}}, {{1},{1,2}}, {{2},{1,1}},
  {{1,2,3}}, {{1},{2,3}}, {{2},{1,3}}, {{3},{1,2}}, {{1},{2},{3}}.
		

Crossrefs

Programs

  • Maple
    C:= binomial:
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
          b(n-i*j, min(n-i*j, i-1), k)*C(C(k+i-1, i), j), j=0..n/i)))
        end:
    a:= n-> add(add(b(n$2, i)*(-1)^(k-i)*C(k, i), i=0..k), k=0..n):
    seq(a(n), n=0..23);  # Alois P. Heinz, Sep 16 2019
  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    allnorm[n_Integer]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1];
    Table[Length[Select[Join@@mps/@allnorm[n],UnsameQ@@#&]],{n,9}]
    (* Second program: *)
    c := Binomial;
    b[n_, i_, k_] := b[n, i, k] = If[n==0, 1, If[i<1, 0, Sum[b[n - i*j, Min[n - i*j, i-1], k] c[c[k+i-1, i], j], {j, 0, n/i}]]];
    a[n_] := Sum[b[n, n, i] (-1)^(k-i) c[k, i], {k, 0, n}, {i, 0, k}];
    a /@ Range[0, 23] (* Jean-François Alcover, Dec 17 2020, after Alois P. Heinz *)

Extensions

a(0), a(8)-a(22) from Alois P. Heinz, Sep 16 2019

A320462 MM-numbers of labeled multigraphs with loops spanning an initial interval of positive integers.

Original entry on oeis.org

1, 7, 13, 49, 91, 161, 169, 299, 329, 343, 377, 611, 637, 667, 1127, 1183, 1261, 1363, 1937, 2021, 2093, 2117, 2197, 2303, 2401, 2639, 3703, 3887, 4277, 4459, 4669, 4901, 6877, 7567, 7889, 7943, 8281, 8671, 8827, 9541, 10933, 13559, 14053, 14147, 14651, 14819
Offset: 1

Views

Author

Gus Wiseman, Oct 13 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}.

Examples

			The sequence of terms together with their multiset multisystems begins:
     1: {}
     7: {{1,1}}
    13: {{1,2}}
    49: {{1,1},{1,1}}
    91: {{1,1},{1,2}}
   161: {{1,1},{2,2}}
   169: {{1,2},{1,2}}
   299: {{2,2},{1,2}}
   329: {{1,1},{2,3}}
   343: {{1,1},{1,1},{1,1}}
   377: {{1,2},{1,3}}
   611: {{1,2},{2,3}}
   637: {{1,1},{1,1},{1,2}}
   667: {{2,2},{1,3}}
  1127: {{1,1},{1,1},{2,2}}
  1183: {{1,1},{1,2},{1,2}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    normQ[sys_]:=Or[Length[sys]==0,Union@@sys==Range[Max@@Max@@sys]];
    Select[Range[10000],And[normQ[primeMS/@primeMS[#]],And@@(Length[primeMS[#]]==2&/@primeMS[#])]&]
Previous Showing 31-40 of 99 results. Next