cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A130744 a(n) = n*(n+2)*n!.

Original entry on oeis.org

0, 3, 16, 90, 576, 4200, 34560, 317520, 3225600, 35925120, 435456000, 5708102400, 80472268800, 1214269056000, 19527937228800, 333456963840000, 6025763487744000, 114887039275008000, 2304854534062080000
Offset: 0

Views

Author

Paul Curtz, Jul 12 2007

Keywords

Comments

For n >= 1, a(n) = number whose factorial base representation (A007623) begins with a double digit {n}{n}, which is followed by n-1 zeros. Viewed in that base, this sequence looks like this: 0, 11, 220, 3300, 44000, 550000, 6600000, 77000000, 880000000, 9900000000, AA000000000, BB0000000000, ... (where "digits" A and B stand for placeholder values 10 and 11 respectively). - Antti Karttunen, May 07 2015

Examples

			G.f. = 3*x + 16*x^2 + 90*x^3 + 576*x^4 + 4200*x^5 + 34560*x^6 + ...
		

Crossrefs

Column 3 of A257503 (apart from initial zero. Equally, row 3 of A257505).
Subsequence of both A227130 and A227148.

Programs

Formula

0 = +a(n) * (+a(n+1) + 2*a(n+2) - 6*a(n+3) + a(n+4)) + a(n+1) * (+5*a(n+2) - 6*a(n+3) + a(n+4)) + a(n+2) * (+3*a(n+2) - a(n+4)) + a(n+3) * (+a(n+3)) if n>=0. - Michael Somos, Mar 26 2014
From Antti Karttunen, May 07 2015: (Start)
a(n) = n * (n! + (n+1)!) = n * A001048(n+1).
a(n) = A005563(n) * A000142(n).
a(n) = (n+2)! - (n+1)! - n! [from Orlovsky's Mathematica-code].
(End)
From Amiram Eldar, May 17 2022: (Start)
Sum_{n>=1} 1/a(n) = (Ei(1) - gamma)/2 - 1/4, where Ei(1) = A091725 and gamma = A001620.
Sum_{n>=1} (-1)^(n+1)/a(n) = (gamma - Ei(-1))/2 - 1/e + 1/4, where Ei(-1) = -A099285 and e = A001113. (End)

Extensions

More terms from Vladimir Joseph Stephan Orlovsky, Dec 05 2008

A255565 a(0) = 0; for n >= 1: if n = A255411(k) for some k, then a(n) = 2*a(k), otherwise, n = A256450(h) for some h, and a(n) = 1 + 2*a(h).

Original entry on oeis.org

0, 1, 3, 7, 2, 15, 5, 31, 11, 63, 23, 127, 6, 47, 255, 13, 14, 95, 4, 511, 27, 29, 30, 191, 9, 1023, 55, 59, 61, 383, 19, 2047, 111, 119, 123, 767, 39, 4095, 223, 239, 247, 1535, 79, 8191, 447, 479, 495, 3071, 10, 159, 16383, 895, 62, 959, 991, 6143, 21, 319, 32767, 1791, 22, 125, 1919, 1983, 126, 12287, 46, 43, 639, 65535, 254, 3583, 12
Offset: 0

Views

Author

Antti Karttunen, May 05 2015

Keywords

Comments

Because all terms of A255411 are even it means that even terms can only occur in even positions (together with some odd terms, for each one of which there is a separate infinite cycle), while terms in odd positions are all odd.

Crossrefs

Inverse: A255566.
Cf. also arrays A257503, A257505.
Related or similar permutations: A273665, A273668.

Formula

a(0) = 0; for n >= 1: if A257680(n) = 0 [i.e., n is one of the terms of A255411], then a(n) = 2*a(A257685(n)), otherwise [when n is one of the terms of A256450], a(n) = 1 + 2*a(A273662(n)).
Other identities:
For all n >= 1, A001511(a(n)) = A257679(n).
For all n >= 1, a(A001563(n)) = A000079(n-1) = 2^(n-1).
For all n >= 1, a(A000142(n)) = A083318(n-1).

Extensions

Formula changed because of the changed starting offset of A256450 - Antti Karttunen, May 30 2016

A257692 Numbers such that the smallest nonzero digit present (A257679) in their factorial base representation is 2.

Original entry on oeis.org

4, 12, 16, 22, 48, 52, 60, 64, 66, 70, 76, 84, 88, 94, 100, 108, 112, 118, 240, 244, 252, 256, 258, 262, 288, 292, 300, 304, 306, 310, 312, 316, 324, 328, 330, 334, 336, 340, 348, 352, 354, 358, 364, 372, 376, 382, 408, 412, 420, 424, 426, 430, 436, 444, 448, 454, 460, 468, 472, 478, 484, 492, 496, 502
Offset: 1

Views

Author

Antti Karttunen, May 04 2015

Keywords

Comments

Numbers k for which A257679(k) = 2.

Examples

			Factorial base representation (A007623) of 22 is "320" as 22 = 3*3! + 2*2! + 0*1!, thus a(22) = 2.
		

Crossrefs

Row 2 of A257503.
Cf. also A257262.

Programs

  • Mathematica
    q[n_] := Module[{k = n, m = 2, r, s = {}}, While[{k, r} = QuotientRemainder[k, m]; k != 0|| r != 0, AppendTo[s, r]; m++]; !MemberQ[s, 1] && MemberQ[s, 2]]; Select[Range[500], q] (* Amiram Eldar, Feb 14 2024 *)
  • Python
    def A(n, p=2): return n if n

A257693 Numbers such that the smallest nonzero digit present (A257679) in their factorial base representation is 3.

Original entry on oeis.org

18, 72, 90, 114, 360, 378, 432, 450, 456, 474, 498, 552, 570, 594, 618, 672, 690, 714, 2160, 2178, 2232, 2250, 2256, 2274, 2520, 2538, 2592, 2610, 2616, 2634, 2640, 2658, 2712, 2730, 2736, 2754, 2760, 2778, 2832, 2850, 2856, 2874, 2898, 2952, 2970, 2994, 3240, 3258, 3312, 3330, 3336, 3354, 3378, 3432, 3450, 3474, 3498, 3552
Offset: 1

Views

Author

Antti Karttunen, May 04 2015

Keywords

Comments

Numbers k for which A257679(k) = 3.

Examples

			Factorial base representation (A007623) of 18 is "300" (as 18 = 3*3! + 0*2! + 0*1!), thus a(18) = 3.
		

Crossrefs

Row 3 of A257503.
Cf. also A257263.

Programs

  • Mathematica
    q[n_] := Module[{k = n, m = 2, r, s = {}}, While[{k, r} = QuotientRemainder[k, m]; k != 0|| r != 0, AppendTo[s, r]; m++]; !ContainsAny[s, {1, 2}] && MemberQ[s, 3]]; Select[Range[3600], q] (* Amiram Eldar, Feb 14 2024 *)
  • Python
    def A(n, p=2): return n if n

A213167 a(n) = n! - (n-2)!.

Original entry on oeis.org

1, 5, 22, 114, 696, 4920, 39600, 357840, 3588480, 39553920, 475372800, 6187104000, 86699289600, 1301447347200, 20835611596800, 354379753728000, 6381450915840000, 121289412980736000, 2426499634470912000
Offset: 2

Views

Author

Olivier Gérard, Nov 02 2012

Keywords

Comments

Row sums of A134433 starting from k=3.
a(n) = sum( (-1)^k*k*A008276(n,k), k=1..n-1).
a(n) = sum( (-1)^k*k*A054654(n,k), k=1..n-2).
For n >= 3, a(n) = number whose factorial base representation (A007623) begins with digits {n-1} and {n-2} followed by n-3 zeros. Viewed in that base, this sequence looks like this: 1, 21, 320, 4300, 54000, 650000, 7600000, 87000000, 980000000, A900000000, BA000000000, ... (where "digits" A and B stand for placeholder values 10 and 11 respectively). - Antti Karttunen, May 07 2015.

Crossrefs

Column 4 of A257503 (apart from initial 1. Equally, row 4 of A257505).
Cf. A067318.

Programs

Formula

a(n) = n! - (n-2)!.
G.f.: (1/G(0) - 1 - x)/x^2 where G(k) = 1 - x/(x - 1/(x - (k+1)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Dec 13 2012
G.f.: (1+x)/x^2*(1/Q(0)-1), where Q(k)= 1 - 2*k*x - x^2*(k + 1)^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 08 2013
G.f.: 2*Q(0), where Q(k)= 1 - 1/( (k+1)*(k+2) - x*(k+1)^2*(k+2)^2*(k+3)/(x*(k+1)*(k+2)*(k+3) - 1/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 08 2013
Previous Showing 11-15 of 15 results.