cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 84 results. Next

A348617 Numbers whose sum of prime indices is twice their negated alternating sum.

Original entry on oeis.org

1, 10, 39, 88, 115, 228, 259, 306, 517, 544, 620, 783, 793, 870, 1150, 1204, 1241, 1392, 1656, 1691, 1722, 1845, 2369, 2590, 2596, 2775, 2944, 3038, 3277, 3280, 3339, 3498, 3692, 3996, 4247, 4440, 4935, 5022, 5170, 5226, 5587, 5644, 5875, 5936, 6200, 6321
Offset: 1

Views

Author

Gus Wiseman, Nov 26 2021

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are also Heinz numbers of partitions whose sum is twice their negated alternating sum.

Examples

			The terms and their prime indices begin:
     1: ()
    10: (3,1)
    39: (6,2)
    88: (5,1,1,1)
   115: (9,3)
   228: (8,2,1,1)
   259: (12,4)
   306: (7,2,2,1)
   517: (15,5)
   544: (7,1,1,1,1,1)
   620: (11,3,1,1)
   783: (10,2,2,2)
   793: (18,6)
   870: (10,3,2,1)
  1150: (9,3,3,1)
  1204: (14,4,1,1)
  1241: (21,7)
  1392: (10,2,1,1,1,1)
  1656: (9,2,2,1,1,1)
  1691: (24,8)
		

Crossrefs

These partitions are counted by A001523 up to 0's.
An ordered version is A349154, nonnegative A348614, reverse A349155.
The nonnegative version is A349159, counted by A000712 up to 0's.
The reverse nonnegative version is A349160, counted by A006330 up to 0's.
A027193 counts partitions with rev-alt sum > 0, ranked by A026424.
A034871, A097805, A345197 count compositions by alternating sum.
A035363 = partitions with alt sum 0, ranked by A066207, complement A086543.
A056239 adds up prime indices, row sums of A112798, row lengths A001222.
A103919 counts partitions by alternating sum, reverse A344612.
A344607 counts partitions with rev-alt sum >= 0, ranked by A344609.
A346697 adds up odd-indexed prime indices.
A346698 adds up even-indexed prime indices.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    Select[Range[1000],Total[primeMS[#]]==-2*ats[primeMS[#]]&]

Formula

A056239(a(n)) = -2*A316524(a(n)).
A346698(a(n)) = 3*A346697(a(n)).

A349151 Heinz numbers of integer partitions with alternating sum <= 1.

Original entry on oeis.org

1, 2, 4, 6, 8, 9, 15, 16, 18, 24, 25, 32, 35, 36, 49, 50, 54, 60, 64, 72, 77, 81, 96, 98, 100, 121, 128, 135, 140, 143, 144, 150, 162, 169, 196, 200, 216, 221, 225, 240, 242, 256, 288, 289, 294, 308, 315, 323, 324, 338, 361, 375, 384, 392, 400, 437, 441, 450
Offset: 1

Views

Author

Gus Wiseman, Nov 10 2021

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
The alternating sum of a partition (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i. This is equal to the number of odd parts in the conjugate partition, so these are also Heinz numbers of partitions with at most one odd conjugate part.

Examples

			The terms and their prime indices begin:
    1: {}
    2: {1}
    4: {1,1}
    6: {1,2}
    8: {1,1,1}
    9: {2,2}
   15: {2,3}
   16: {1,1,1,1}
   18: {1,2,2}
   24: {1,1,1,2}
   25: {3,3}
   32: {1,1,1,1,1}
   35: {3,4}
   36: {1,1,2,2}
   49: {4,4}
		

Crossrefs

The case of alternating sum 0 is A000290.
These partitions are counted by A100824.
These are the positions of 0's and 1's in A344616.
The case of alternating sum 1 is A345958.
The conjugate partitions are ranked by A349150.
A000041 counts integer partitions.
A056239 adds up prime indices, row sums of A112798.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A106529 ranks balanced partitions, counted by A047993.
A122111 is a representation of partition conjugation.
A257991 counts odd prime indices.
A316524 gives the alternating sum of prime indices.
A344610 counts partitions by sum and positive reverse-alternating sum.
A349157 ranks partitions with as many even parts as odd conjugate parts.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    Select[Range[100],ats[Reverse[primeMS[#]]]<=1&]

Formula

Equals A000290 \/ A345958 decapitated.

A352143 Numbers whose prime indices and conjugate prime indices are all odd.

Original entry on oeis.org

1, 2, 5, 8, 11, 17, 20, 23, 31, 32, 41, 44, 47, 59, 67, 68, 73, 80, 83, 92, 97, 103, 109, 124, 125, 127, 128, 137, 149, 157, 164, 167, 176, 179, 188, 191, 197, 211, 227, 233, 236, 241, 257, 268, 269, 272, 275, 277, 283, 292, 307, 313, 320, 331, 332, 347, 353
Offset: 1

Views

Author

Gus Wiseman, Mar 18 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239, length A001222.
A number's prime signature is the sequence of positive exponents in its prime factorization, which is row n of A124010, length A001221, sum A001222.
These are the Heinz numbers of integer partitions whose parts and conjugate parts are all odd. They are counted by A053253.

Examples

			The terms together with their prime indices begin:
   1: {}
   2: {1}
   5: {3}
   8: {1,1,1}
  11: {5}
  17: {7}
  20: {1,1,3}
  23: {9}
  31: {11}
  32: {1,1,1,1,1}
  41: {13}
  44: {1,1,5}
  47: {15}
  59: {17}
  67: {19}
  68: {1,1,7}
  73: {21}
  80: {1,1,1,1,3}
		

Crossrefs

The restriction to primes is A031368.
These partitions appear to be counted by A053253.
The even version is A066207^2.
For even instead of odd conjugate parts we get A066208^2.
The first condition alone (all odd indices) is A066208, counted by A000009.
The second condition alone is A346635, counted by A000009.
A055922 counts partitions with odd multiplicities, ranked by A268335.
A066207 = indices all even, counted by A035363 (complement A086543).
A109297 = same indices as exponents, counted by A114640.
A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
A124010 gives prime signature, sorted A118914, length A001221, sum A001222.
A162642 counts odd prime exponents, even A162641.
A238745 gives the Heinz number of the conjugate prime signature.
A257991 counts odd indices, even A257992.
A258116 ranks strict partitions with all odd parts, even A258117.
A351979 = odd indices and even multiplicities, counted by A035457.
A352140 = even indices and odd multiplicities, counted by A055922 aerated.
A352141 = even indices and even multiplicities, counted by A035444.
A352142 = odd indices and odd multiplicities, counted by A117958.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Select[Range[100],And@@OddQ/@primeMS[#]&&And@@OddQ/@conj[primeMS[#]]&]

Formula

Intersection of A066208 and A346635.

A366530 Heinz numbers of integer partitions of even numbers with at least one odd part.

Original entry on oeis.org

4, 10, 12, 16, 22, 25, 28, 30, 34, 36, 40, 46, 48, 52, 55, 62, 64, 66, 70, 75, 76, 82, 84, 85, 88, 90, 94, 100, 102, 108, 112, 115, 116, 118, 120, 121, 130, 134, 136, 138, 144, 146, 148, 154, 155, 156, 160, 165, 166, 172, 175, 184, 186, 187, 190, 192, 194, 196
Offset: 1

Views

Author

Gus Wiseman, Oct 16 2023

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The terms together with their prime indices are the following. Each multiset has even sum and at least one odd part.
    4: {1,1}
   10: {1,3}
   12: {1,1,2}
   16: {1,1,1,1}
   22: {1,5}
   25: {3,3}
   28: {1,1,4}
   30: {1,2,3}
   34: {1,7}
   36: {1,1,2,2}
   40: {1,1,1,3}
   46: {1,9}
   48: {1,1,1,1,2}
   52: {1,1,6}
   55: {3,5}
   62: {1,11}
   64: {1,1,1,1,1,1}
		

Crossrefs

These partitions are counted by A182616, even bisection of A086543.
Not requiring at least one odd part gives A300061.
Allowing partitions of odd numbers gives A366322.
A031368 lists primes of odd index.
A066207 ranks partitions with all even parts, counted by A035363.
A066208 ranks partitions with all odd parts, counted by A000009.
A112798 list prime indices, sum A056239.
A257991 counts odd prime indices, distinct A324966.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100], EvenQ[Total[prix[#]]]&&Or@@OddQ/@prix[#]&]

A366748 Numbers k such that (sum of odd prime indices of k) = (sum of even prime indices of k).

Original entry on oeis.org

1, 12, 70, 90, 112, 144, 286, 325, 462, 520, 525, 594, 646, 675, 832, 840, 1045, 1080, 1326, 1334, 1344, 1666, 1672, 1728, 1900, 2142, 2145, 2294, 2465, 2622, 2695, 2754, 3040, 3432, 3465, 3509, 3526, 3900, 3944, 4186, 4255, 4312, 4455, 4845, 4864, 4900, 4982
Offset: 1

Views

Author

Gus Wiseman, Oct 23 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
     1: {}
    12: {1,1,2}
    70: {1,3,4}
    90: {1,2,2,3}
   112: {1,1,1,1,4}
   144: {1,1,1,1,2,2}
   286: {1,5,6}
   325: {3,3,6}
   462: {1,2,4,5}
   520: {1,1,1,3,6}
   525: {2,3,3,4}
   594: {1,2,2,2,5}
   646: {1,7,8}
   675: {2,2,2,3,3}
   832: {1,1,1,1,1,1,6}
   840: {1,1,1,2,3,4}
For example, 525 has prime indices {2,3,3,4}, and 3+3 = 2+4, so 525 is in the sequence.
		

Crossrefs

For prime factors instead of indices we have A019507.
Partitions of this type are counted by A239261.
For count instead of sum we have A325698, distinct A325700.
The LHS (sum of odd prime indices) is A366528, triangle A113685.
The RHS (sum of even prime indices) is A366531, triangle A113686.
These are the positions of zeros in A366749.
A000009 counts partitions into odd parts, ranked by A066208.
A035363 counts partitions into even parts, ranked by A066207.
A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
A257991 counts odd prime indices, even A257992.
A300061 lists numbers with even sum of prime indices, odd A300063.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1000], Total[Select[prix[#],OddQ]]==Total[Select[prix[#],EvenQ]]&]

Formula

These are numbers k such that A346697(k) = A346698(k).

A366847 Numbers whose halved even prime indices are nonempty and relatively prime.

Original entry on oeis.org

3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69, 72, 75, 78, 81, 84, 87, 90, 91, 93, 96, 99, 102, 105, 108, 111, 114, 117, 120, 123, 126, 129, 132, 135, 138, 141, 144, 147, 150, 153, 156, 159, 162, 165, 168, 171, 174
Offset: 1

Views

Author

Gus Wiseman, Oct 31 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Consists of powers of 2 times elements of the odd restriction A366849.

Examples

			The even prime indices of 91 are {4,6}, halved {2,3}, which are relatively prime, so 91 is in the sequence.
The prime indices of 665 are {3,4,8}, even {4,8}, halved {2,4}, which are not relatively prime, so 665 is not in the sequence.
The terms together with their prime indices begin:
    3: {2}
    6: {1,2}
    9: {2,2}
   12: {1,1,2}
   15: {2,3}
   18: {1,2,2}
   21: {2,4}
   24: {1,1,1,2}
   27: {2,2,2}
   30: {1,2,3}
   33: {2,5}
   36: {1,1,2,2}
   39: {2,6}
   42: {1,2,4}
   45: {2,2,3}
   48: {1,1,1,1,2}
		

Crossrefs

Including odd indices gives A289509, ones of A289508, counted by A000837.
The complement including odd indices is A318978, counted by A018783.
The partitions with these ranks are counted by A366845.
A version for odd indices A366846, counted by A366850.
The odd restriction is A366849.
A000041 counts integer partitions, strict A000009 (also into odds).
A035363 counts partitions into all even parts, ranks A066207.
A112798 lists prime indices, length A001222, sum A056239.
A162641 counts even prime exponents, odd A162642.
A257992 counts even prime indices, odd A257991.
A366528 adds up odd prime indices, partition triangle A113685.
A366531 = 2*A366533 adds up even prime indices, triangle A113686/A174713.

Programs

  • Mathematica
    Select[Range[100],GCD@@Select[PrimePi/@First/@FactorInteger[#],EvenQ]/2==1&]

A341447 Heinz numbers of integer partitions whose only even part is the smallest.

Original entry on oeis.org

3, 7, 13, 15, 19, 29, 33, 37, 43, 51, 53, 61, 69, 71, 75, 77, 79, 89, 93, 101, 107, 113, 119, 123, 131, 139, 141, 151, 161, 163, 165, 173, 177, 181, 193, 199, 201, 217, 219, 221, 223, 229, 239, 249, 251, 255, 263, 271, 281, 287, 291, 293, 299, 309, 311, 317
Offset: 1

Views

Author

Gus Wiseman, Feb 13 2021

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are numbers whose only even prime index (counting multiplicity) is the smallest.

Examples

			The sequence of partitions together with their Heinz numbers begins:
      3: (2)         77: (5,4)     165: (5,3,2)
      7: (4)         79: (22)      173: (40)
     13: (6)         89: (24)      177: (17,2)
     15: (3,2)       93: (11,2)    181: (42)
     19: (8)        101: (26)      193: (44)
     29: (10)       107: (28)      199: (46)
     33: (5,2)      113: (30)      201: (19,2)
     37: (12)       119: (7,4)     217: (11,4)
     43: (14)       123: (13,2)    219: (21,2)
     51: (7,2)      131: (32)      221: (7,6)
     53: (16)       139: (34)      223: (48)
     61: (18)       141: (15,2)    229: (50)
     69: (9,2)      151: (36)      239: (52)
     71: (20)       161: (9,4)     249: (23,2)
     75: (3,3,2)    163: (38)      251: (54)
		

Crossrefs

These partitions are counted by A087897, shifted left once.
Terms of A340933 can be factored into elements of this sequence.
The odd version is A341446.
A000009 counts partitions into odd parts, ranked by A066208.
A001222 counts prime factors.
A005843 lists even numbers.
A026804 counts partitions whose least part is odd, ranked by A340932.
A026805 counts partitions whose least part is even, ranked by A340933.
A027187 counts partitions with even length/max, ranked by A028260/A244990.
A031215 lists even-indexed primes.
A055396 selects least prime index.
A056239 adds up prime indices.
A058696 counts partitions of even numbers, ranked by A300061.
A061395 selects greatest prime index.
A066207 lists numbers with all even prime indices.
A112798 lists the prime indices of each positive integer.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[2,100],EvenQ[First[primeMS[#]]]&&And@@OddQ[Rest[primeMS[#]]]&]

A366839 Sum of even prime factors of 2n, counted with multiplicity.

Original entry on oeis.org

2, 4, 2, 6, 2, 4, 2, 8, 2, 4, 2, 6, 2, 4, 2, 10, 2, 4, 2, 6, 2, 4, 2, 8, 2, 4, 2, 6, 2, 4, 2, 12, 2, 4, 2, 6, 2, 4, 2, 8, 2, 4, 2, 6, 2, 4, 2, 10, 2, 4, 2, 6, 2, 4, 2, 8, 2, 4, 2, 6, 2, 4, 2, 14, 2, 4, 2, 6, 2, 4, 2, 8, 2, 4, 2, 6, 2, 4, 2, 10, 2, 4, 2, 6, 2
Offset: 1

Views

Author

Gus Wiseman, Oct 25 2023

Keywords

Examples

			The prime factors of 2*60 are {2,2,2,3,5}, of which the even factors are {2,2,2}, so a(60) = 6.
		

Crossrefs

A compound version is A001414, triangle A331416.
Dividing by 2 gives A001511.
Positions of 2's are A005408.
For count instead of sum we have A007814, odd version A087436.
The partition triangle for this statistic is A116598 aerated.
For indices we have A366531, halved A366533, triangle A113686/A174713.
The odd version is A366840.
A019507 lists numbers with (even factor sum) = (odd factor sum).
A066207 lists numbers with all even prime indices, counted by A035363.
A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
A162641 counts even prime exponents, odd A162642.
A239261 counts partitions with (sum of odd parts) = (sum of even parts).
A257992 counts even prime indices, odd A257991.
A366528 adds up odd prime indices, triangle A113685 (without zeros A365067).

Programs

  • Mathematica
    Table[2*Length[NestWhileList[#/2&,n,EvenQ]],{n,100}]
  • PARI
    a(n) = 2 * valuation(n, 2) + 2; \\ Amiram Eldar, Sep 13 2024

Formula

a(n) = 2*A001511(n).
a(n) = A100006(n) - A366840(2n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 4. - Amiram Eldar, Sep 13 2024

A366840 Sum of odd prime factors of n, counted with multiplicity.

Original entry on oeis.org

0, 0, 3, 0, 5, 3, 7, 0, 6, 5, 11, 3, 13, 7, 8, 0, 17, 6, 19, 5, 10, 11, 23, 3, 10, 13, 9, 7, 29, 8, 31, 0, 14, 17, 12, 6, 37, 19, 16, 5, 41, 10, 43, 11, 11, 23, 47, 3, 14, 10, 20, 13, 53, 9, 16, 7, 22, 29, 59, 8, 61, 31, 13, 0, 18, 14, 67, 17, 26, 12, 71, 6
Offset: 1

Views

Author

Gus Wiseman, Oct 27 2023

Keywords

Comments

Contains all positive integers except 1, 2, 4.

Examples

			The prime factors of 60 are {2,2,2,3,5}, of which the odd factors are {3,5}, so a(60) = 8.
		

Crossrefs

The compound version is A001414, triangle A331416.
For count instead of sum we have A087436, even version A007814.
Odd-indexed terms are A100005.
Positions of odd terms are A335657, even A036349.
For prime indices we have A366528, triangle A113685 (without zeros A365067)
The even version is A366839 = 2*A001511.
The partition triangle for this statistic is A366851, even version A116598.
A019507 lists numbers with (even factor sum) = (odd factor sum).
A066207 lists numbers with all even prime indices, counted by A035363.
A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
A162641 counts even prime exponents, odd A162642.
A239261 counts partitions with (sum of odd parts) = (sum of even parts).
A257992 counts even prime indices, odd A257991.

Programs

  • Mathematica
    Table[Total[Times@@@DeleteCases[If[n==1,{}, FactorInteger[n]],{2,_}]],{n,100}]
  • PARI
    a(n) = my(f=factor(n), j=if(n%2, 1, 2)); sum(i=j, #f~, f[i,1]*f[i,2]); \\ Michel Marcus, Oct 30 2023

Formula

a(n) = A100006(n) - A366839(n).
a(2n) = a(n).
a(2n-1) = A001414(2n-1) = A100005(n).
Completely additive with a(2^e) = 0 and a(p^e) = e*p for an odd prime p. - Amiram Eldar, Nov 03 2023

A366529 Heinz numbers of integer partitions of even numbers with at least one even part.

Original entry on oeis.org

3, 7, 9, 12, 13, 19, 21, 27, 28, 29, 30, 36, 37, 39, 43, 48, 49, 52, 53, 57, 61, 63, 66, 70, 71, 75, 76, 79, 81, 84, 87, 89, 90, 91, 101, 102, 107, 108, 111, 112, 113, 116, 117, 120, 129, 130, 131, 133, 138, 139, 144, 147, 148, 151, 154, 156, 159, 163, 165
Offset: 1

Views

Author

Gus Wiseman, Oct 16 2023

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The terms together with their prime indices begin:
   3: {2}
   7: {4}
   9: {2,2}
  12: {1,1,2}
  13: {6}
  19: {8}
  21: {2,4}
  27: {2,2,2}
  28: {1,1,4}
  29: {10}
  30: {1,2,3}
  36: {1,1,2,2}
  37: {12}
  39: {2,6}
  43: {14}
  48: {1,1,1,1,2}
		

Crossrefs

The complement is counted by A047967.
For all even parts we have A066207, counted by A035363, odd A066208.
Not requiring an even part gives A300061.
For odd instead of even we have A300063.
Not requiring even sum gives A324929.
Partitions of this type are counted by A366527.
A112798 list prime indices, sum A056239.
A257991 counts odd prime indices, distinct A324966.
A257992 counts even prime indices, distinct A324967.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],EvenQ[Total[prix[#]]]&&Or@@EvenQ/@prix[#]&]
Previous Showing 71-80 of 84 results. Next