cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 34 results. Next

A304998 Number of unlabeled antichains of finite sets spanning n vertices without singletons.

Original entry on oeis.org

1, 0, 1, 3, 15, 160, 15963, 489980652
Offset: 0

Views

Author

Gus Wiseman, May 23 2018

Keywords

Examples

			Non-isomorphic representatives of the a(4) = 15 antichains:
  {{1,2,3,4}}
  {{1,2},{3,4}}
  {{1,4},{2,3,4}}
  {{1,3,4},{2,3,4}}
  {{1,2},{1,3,4},{2,3,4}}
  {{1,3},{1,4},{2,3,4}}
  {{1,3},{2,4},{3,4}}
  {{1,4},{2,4},{3,4}}
  {{1,2,4},{1,3,4},{2,3,4}}
  {{1,2},{1,3},{1,4},{2,3,4}}
  {{1,2},{1,3},{2,4},{3,4}}
  {{1,4},{2,3},{2,4},{3,4}}
  {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
  {{1,3},{1,4},{2,3},{2,4},{3,4}}
  {{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}}
		

Crossrefs

Formula

a(n > 0) = A261005(n) - A261005(n - 1).

A326358 Number of maximal antichains of subsets of {1..n}.

Original entry on oeis.org

1, 2, 3, 7, 29, 376, 31746, 123805914
Offset: 0

Views

Author

Gus Wiseman, Jul 01 2019

Keywords

Comments

A set system (set of sets) is an antichain if no element is a subset of any other.

Examples

			The a(0) = 1 through a(3) = 7 maximal antichains:
  {}  {}   {}      {}
      {1}  {12}    {123}
           {1}{2}  {1}{23}
                   {2}{13}
                   {3}{12}
                   {1}{2}{3}
                   {12}{13}{23}
		

Crossrefs

Antichains of sets are A000372.
Minimal covering antichains are A046165.
Maximal intersecting antichains are A007363.
Maximal antichains of nonempty sets are A326359.

Programs

  • GAP
    LoadPackage("grape");
          maxachP:=function(n) local g,G;
           g:=Graph(Group(()), Combinations([1..n]), function(x, g) return x; end,
              function(x, y) return not IsSubset(x, y) and not IsSubset(y, x); end, true);
           G:=AutGroupGraph(g);
           return Sum(CompleteSubgraphs(NewGroupGraph(G, g), -1, 2),
                  function(c) return Length(Orbit(G, c, OnSets)); end);
         end;
           List([0..7],maxachP); # Mamuka Jibladze, Jan 26 2021
  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)];
    Table[Length[fasmax[stableSets[Subsets[Range[n]],SubsetQ]]],{n,0,5}]
    (* alternatively *)
    maxachP[n_]:=FindIndependentVertexSet[
      Flatten[Map[Function[s, Map[# \[DirectedEdge] s &, Most[Subsets[s]]]],
        Subsets[Range[n]]]], Infinity, All];
    Table[Length[maxachP[n]],{n,0,6}] (* Mamuka Jibladze, Jan 25 2021 *)

Formula

For n > 0, a(n) = A326359(n) + 1.

Extensions

a(6)-a(7) from Mamuka Jibladze, Jan 26 2021

A324167 Number of non-crossing antichain covers of {1,...,n}.

Original entry on oeis.org

1, 1, 2, 9, 67, 633, 6763, 77766, 938957, 11739033, 150649945, 1973059212, 26265513030, 354344889798, 4833929879517, 66568517557803, 924166526830701, 12920482325488761, 181750521972603049, 2570566932237176232, 36532394627404815308, 521439507533582646156
Offset: 0

Views

Author

Gus Wiseman, Feb 17 2019

Keywords

Comments

An antichain is non-crossing if no pair of distinct parts is of the form {{...x...y...}, {...z...t...}} where x < z < y < t or z < x < t < y.

Examples

			The a(3) = 9 antichains:
  {{1,2,3}}
  {{1},{2,3}}
  {{2},{1,3}}
  {{3},{1,2}}
  {{1,2},{1,3}}
  {{1,2},{2,3}}
  {{1,3},{2,3}}
  {{1},{2},{3}}
  {{1,2},{1,3},{2,3}}
		

Crossrefs

Cf. A000108, A000124, A000372 (antichains), A001006, A006126 (antichain covers), A014466, A048143, A054726 (non-crossing graphs), A099947, A261005, A283877, A306438.
Cf. A324166, A324168, A324169, A324170, A324171, A324173, A359984 (no singletons).

Programs

  • Mathematica
    nn=6;
    croXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x
    				
  • PARI
    seq(n)={my(f=O(1)); for(n=2, n, f = 1 + (4*x + x^2)*f^2 - 3*x^2*(1 + x)*f^3); Vec(subst(x*(1 + x^2*f^2 - 3*x^3*f^3), x, x/(1-x))/x) } \\ Andrew Howroyd, Jan 20 2023

Formula

Inverse binomial transform of A324168.
Binomial transform of A359984. - Andrew Howroyd, Jan 20 2023

Extensions

Terms a(9) and beyond from Andrew Howroyd, Jan 20 2023

A326363 Number of maximal intersecting antichains of subsets of {1..n}.

Original entry on oeis.org

1, 2, 4, 6, 21, 169, 11749, 12160648
Offset: 0

Views

Author

Gus Wiseman, Jul 01 2019

Keywords

Comments

A set system (set of sets) is an antichain if no element is a subset of any other, and is intersecting if no two element are disjoint.

Examples

			The a(1) = 1 through a(4) = 21 maximal intersecting antichains:
  {}   {}    {}            {}
  {1}  {1}   {1}           {1}
       {2}   {2}           {2}
       {12}  {3}           {3}
             {123}         {4}
             {12}{13}{23}  {1234}
                           {12}{13}{23}
                           {12}{14}{24}
                           {13}{14}{34}
                           {23}{24}{34}
                           {12}{134}{234}
                           {13}{124}{234}
                           {14}{123}{234}
                           {23}{124}{134}
                           {24}{123}{134}
                           {34}{123}{124}
                           {12}{13}{14}{234}
                           {12}{23}{24}{134}
                           {13}{23}{34}{124}
                           {14}{24}{34}{123}
                           {123}{124}{134}{234}
		

Crossrefs

The case with nonempty, non-singleton edges is A326362.
Antichains of nonempty, non-singleton sets are A307249.
Minimal covering antichains are A046165.
Maximal intersecting antichains are A007363.
Maximal antichains of nonempty sets are A326359.

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)];
    Table[Length[fasmax[stableSets[Subsets[Range[n],{0,n}],Or[Intersection[#1,#2]=={},SubsetQ[#1,#2]]&]]],{n,0,5}]
    (* 2nd program *)
    n = 2^6; g = CompleteGraph[n]; i = 0;
    While[i < n, i++; j = i; While[j < n, j++; If[BitAnd[i, j] == 0 || BitAnd[i, j] == i || BitAnd[i, j] == j, g = EdgeDelete[g, i <-> j]]]];
    sets = FindClique[g, Infinity, All];
    Length[sets] (* Elijah Beregovsky, May 06 2020 *)

Formula

For n > 1, a(n) = A007363(n + 1) + 1 = A326362(n) + n + 1.

Extensions

a(7) from Elijah Beregovsky, May 06 2020

A304997 Number of unlabeled antichains of finite sets spanning n vertices with singleton edges allowed.

Original entry on oeis.org

1, 1, 4, 18, 142, 3100, 823042
Offset: 0

Views

Author

Gus Wiseman, May 23 2018

Keywords

Examples

			Non-isomorphic representatives of the a(3) = 18 antichains:
{{1,2,3}}
{{3},{1,2}}
{{3},{1,2,3}}
{{1,3},{2,3}}
{{1},{2},{3}}
{{2},{3},{1,3}}
{{2},{3},{1,2,3}}
{{3},{1,2},{2,3}}
{{3},{1,3},{2,3}}
{{1,2},{1,3},{2,3}}
{{1},{2},{3},{2,3}}
{{1},{2},{3},{1,2,3}}
{{2},{3},{1,2},{1,3}}
{{2},{3},{1,3},{2,3}}
{{3},{1,2},{1,3},{2,3}}
{{1},{2},{3},{1,3},{2,3}}
{{2},{3},{1,2},{1,3},{2,3}}
{{1},{2},{3},{1,2},{1,3},{2,3}}
		

Crossrefs

Formula

a(n) = A304996(n) - A304996(n-1) for n > 0. - Andrew Howroyd, Aug 13 2019
Euler transform of A304983. - Andrew Howroyd, Aug 14 2019

Extensions

a(5)-a(6) from Andrew Howroyd, Aug 13 2019

A326359 Number of maximal antichains of nonempty subsets of {1..n}.

Original entry on oeis.org

1, 1, 2, 6, 28, 375, 31745, 123805913
Offset: 0

Views

Author

Gus Wiseman, Jul 01 2019

Keywords

Comments

A set system (set of sets) is an antichain if no element is a subset of any other.

Examples

			The a(0) = 1 through a(4) = 28 antichains:
  {}   {1}    {12}      {123}           {1234}
              {1}{2}    {1}{23}         {1}{234}
                        {2}{13}         {2}{134}
                        {3}{12}         {3}{124}
                        {1}{2}{3}       {4}{123}
                        {12}{13}{23}    {1}{2}{34}
                                        {1}{3}{24}
                                        {1}{4}{23}
                                        {2}{3}{14}
                                        {2}{4}{13}
                                        {3}{4}{12}
                                        {1}{2}{3}{4}
                                        {12}{134}{234}
                                        {13}{124}{234}
                                        {14}{123}{234}
                                        {23}{124}{134}
                                        {24}{123}{134}
                                        {34}{123}{124}
                                        {1}{23}{24}{34}
                                        {2}{13}{14}{34}
                                        {3}{12}{14}{24}
                                        {4}{12}{13}{23}
                                        {12}{13}{14}{234}
                                        {12}{23}{24}{134}
                                        {13}{23}{34}{124}
                                        {14}{24}{34}{123}
                                        {123}{124}{134}{234}
                                        {12}{13}{14}{23}{24}{34}
		

Crossrefs

Antichains of nonempty sets are A014466.
Minimal covering antichains are A046165.
Maximal intersecting antichains are A007363.
Maximal antichains of sets are A326358.

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)];
    Table[Length[fasmax[stableSets[Subsets[Range[n],{1,n}],SubsetQ]]],{n,0,5}]

Formula

For n > 0, a(n) = A326358(n) - 1.

Extensions

a(6) from Andrew Howroyd, Aug 14 2019
a(7) from Dmitry I. Ignatov, Oct 12 2021

A326361 Number of maximal intersecting antichains of sets covering n vertices with no singletons.

Original entry on oeis.org

1, 1, 1, 2, 12, 133, 11386, 12143511
Offset: 0

Views

Author

Gus Wiseman, Jul 01 2019

Keywords

Comments

Covering means there are no isolated vertices. A set system (set of sets) is an antichain if no part is a subset of any other, and is intersecting if no two parts are disjoint.

Examples

			The a(4) = 12 antichains:
  {{1,2,3,4}}
  {{1,2},{1,3,4},{2,3,4}}
  {{1,3},{1,2,4},{2,3,4}}
  {{1,4},{1,2,3},{2,3,4}}
  {{2,3},{1,2,4},{1,3,4}}
  {{2,4},{1,2,3},{1,3,4}}
  {{3,4},{1,2,3},{1,2,4}}
  {{1,2},{1,3},{1,4},{2,3,4}}
  {{1,2},{2,3},{2,4},{1,3,4}}
  {{1,3},{2,3},{3,4},{1,2,4}}
  {{1,4},{2,4},{3,4},{1,2,3}}
  {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
		

Crossrefs

Antichains of nonempty, non-singleton sets are A307249.
Minimal covering antichains are A046165.
Maximal intersecting antichains are A007363.
Maximal antichains of nonempty sets are A326359.

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)];
    Table[Length[fasmax[Select[stableSets[Subsets[Range[n]],Or[Intersection[#1,#2]=={},SubsetQ[#1,#2]]&],Union@@#==Range[n]&]]],{n,0,5}]
    (* 2nd program *)
    n = 2^6; g = CompleteGraph[n]; i = 0;
    While[i < n, i++; j = i; While[j < n, j++; If[BitAnd[i, j] == 0 || BitAnd[i, j] == i || BitAnd[i, j] == j, g = EdgeDelete[g, i <-> j]]]];
    sets = Select[FindClique[g, Infinity, All], BitOr @@ # == n - 1 &];
    Length[sets] (* Elijah Beregovsky, May 05 2020 *)

Extensions

a(6)-a(7) from Elijah Beregovsky, May 05 2020

A326362 Number of maximal intersecting antichains of nonempty, non-singleton subsets of {1..n}.

Original entry on oeis.org

1, 1, 1, 2, 16, 163, 11742, 12160640
Offset: 0

Views

Author

Gus Wiseman, Jul 01 2019

Keywords

Comments

A set system (set of sets) is an antichain if no part is a subset of any other, and is intersecting if no two parts are disjoint.

Examples

			The a(4) = 16 maximal intersecting antichains:
  {{1,2,3,4}}
  {{1,2},{1,3},{2,3}}
  {{1,2},{1,4},{2,4}}
  {{1,3},{1,4},{3,4}}
  {{2,3},{2,4},{3,4}}
  {{1,2},{1,3,4},{2,3,4}}
  {{1,3},{1,2,4},{2,3,4}}
  {{1,4},{1,2,3},{2,3,4}}
  {{2,3},{1,2,4},{1,3,4}}
  {{2,4},{1,2,3},{1,3,4}}
  {{3,4},{1,2,3},{1,2,4}}
  {{1,2},{1,3},{1,4},{2,3,4}}
  {{1,2},{2,3},{2,4},{1,3,4}}
  {{1,3},{2,3},{3,4},{1,2,4}}
  {{1,4},{2,4},{3,4},{1,2,3}}
  {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
		

Crossrefs

Antichains of nonempty, non-singleton sets are A307249.
Minimal covering antichains are A046165.
Maximal intersecting antichains are A007363.
Maximal antichains of nonempty sets are A326359.

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)];
    Table[Length[fasmax[stableSets[Subsets[Range[n],{2,n}],Or[Intersection[#1,#2]=={},SubsetQ[#1,#2]]&]]],{n,0,5}]
    (* 2nd program *)
    n = 2^6; g = CompleteGraph[n]; i = 0;
    While[i < n, i++; j = i; While[j < n, j++; If[BitAnd[i, j] == 0 || BitAnd[i, j] == i || BitAnd[i, j] == j, g = EdgeDelete[g, i <-> j]]]];
    sets = FindClique[g, Infinity, All];
    Length[sets]-Log[2,n]-1 (* Elijah Beregovsky, May 06 2020 *)

Formula

For n > 1, a(n) = A326363(n) - n - 1 = A007363(n + 1) - n.

Extensions

a(7) from Elijah Beregovsky, May 06 2020

A306505 Number of non-isomorphic antichains of nonempty subsets of {1,...,n}.

Original entry on oeis.org

1, 2, 4, 9, 29, 209, 16352, 490013147, 1392195548889993357, 789204635842035040527740846300252679
Offset: 0

Views

Author

Gus Wiseman, Feb 20 2019

Keywords

Comments

The spanning case is A006602 or A261005. The labeled case is A014466.
From Petros Hadjicostas, Apr 22 2020: (Start)
a(n) is the number of "types" of log-linear hierarchical models on n factors in the sense of Colin Mallows (see the emails to N. J. A. Sloane).
Two hierarchical models on n factors belong to the same "type" iff one can obtained from the other by a permutation of the factors.
The total number of hierarchical log-linear models on n factors (in all "types") is given by A014466(n) = A000372(n) - 1.
The name of a hierarchical log-linear model on factors is based on the collection of maximal interaction terms, which must be an antichain (by the definition of maximality).
In his example on p. 1, Colin Mallows groups the A014466(3) = 19 hierarchical log-linear models on n = 3 factors x, y, z into a(3) = 9 types. See my example below for more details. (End)
First differs from A348260(n + 1) - 1 at a(5) = 209, A348260(6) - 1 = 232. - Gus Wiseman, Nov 28 2021

Examples

			Non-isomorphic representatives of the a(0) = 1 through a(3) = 9 antichains:
  {}  {}     {}         {}
      {{1}}  {{1}}      {{1}}
             {{1,2}}    {{1,2}}
             {{1},{2}}  {{1},{2}}
                        {{1,2,3}}
                        {{1},{2,3}}
                        {{1},{2},{3}}
                        {{1,3},{2,3}}
                        {{1,2},{1,3},{2,3}}
From _Petros Hadjicostas_, Apr 23 2020: (Start)
We expand _Colin Mallows_'s example from p. 1 of his list of 1991 emails. For n = 3, we have the following a(3) = 9 "types" of log-linear hierarchical models:
Type 1: ( ), Type 2: (x), (y), (z), Type 3: (x,y), (y,z), (z,x), Type 4: (x,y,z), Type 5: (xy), (yz), (zx), Type 6: (xy,z), (yz,x), (zx,y), Type 7: (xy,xz), (yx,yz), (zx,zy), Type 8: (xy,yz,zx), Type 9: (xyz).
For each model, the name only contains the maximal terms. See p. 36 in Wickramasinghe (2008) for the full description of the 19 models.
Strictly speaking, I should have used set notation (rather than parentheses) for the name of each model, but I follow the tradition of the theory of log-linear models. In addition, in an interaction term such as xy, the order of the factors is irrelevant.
Models in the same type essentially have similar statistical properties.
For example, models in Type 7 have the property that two factors are conditionally independent of one another given each level (= category) of the third factor.
Models in Type 6 are such that two factors are jointly independent from the third one. (End)
		

Crossrefs

Formula

a(n) = A003182(n) - 1.
Partial sums of A006602 minus 1.

Extensions

a(8) from A003182. - Bartlomiej Pawelski, Nov 27 2022
a(9) from A003182. - Dmitry I. Ignatov, Nov 27 2023

A304996 Number of unlabeled antichains of finite sets spanning up to n vertices with singleton edges allowed.

Original entry on oeis.org

1, 2, 6, 24, 166, 3266, 826308
Offset: 0

Views

Author

Gus Wiseman, May 23 2018

Keywords

Examples

			Non-isomorphic representatives of the a(3) = 24 antichains:
{}
{{1}}
{{1,2}}
{{1,2,3}}
{{1},{2}}
{{2},{1,2}}
{{3},{1,2}}
{{3},{1,2,3}}
{{1,3},{2,3}}
{{1},{2},{3}}
{{1},{2},{1,2}}
{{2},{3},{1,3}}
{{2},{3},{1,2,3}}
{{3},{1,2},{2,3}}
{{3},{1,3},{2,3}}
{{1,2},{1,3},{2,3}}
{{1},{2},{3},{2,3}}
{{1},{2},{3},{1,2,3}}
{{2},{3},{1,2},{1,3}}
{{2},{3},{1,3},{2,3}}
{{3},{1,2},{1,3},{2,3}}
{{1},{2},{3},{1,3},{2,3}}
{{2},{3},{1,2},{1,3},{2,3}}
{{1},{2},{3},{1,2},{1,3},{2,3}}
		

Crossrefs

Extensions

a(5)-a(6) from Andrew Howroyd, Aug 14 2019
Previous Showing 11-20 of 34 results. Next