cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A286653 Square array A(n,k), n>=0, k>=1, read by antidiagonals, where column k is the expansion of Product_{j>=1} (1 - x^(k*j))/(1 - x^j).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 2, 0, 1, 1, 2, 2, 2, 0, 1, 1, 2, 3, 4, 3, 0, 1, 1, 2, 3, 4, 5, 4, 0, 1, 1, 2, 3, 5, 6, 7, 5, 0, 1, 1, 2, 3, 5, 6, 9, 9, 6, 0, 1, 1, 2, 3, 5, 7, 10, 12, 13, 8, 0, 1, 1, 2, 3, 5, 7, 10, 13, 16, 16, 10, 0, 1, 1, 2, 3, 5, 7, 11, 14, 19, 22, 22, 12, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, May 11 2017

Keywords

Comments

A(n,k) is the number of partitions of n in which no parts are multiples of k.
A(n,k) is also the number of partitions of n into at most k-1 copies of each part.

Examples

			Square array begins:
  1,  1,  1,  1,  1,  1,  ...
  0,  1,  1,  1,  1,  1,  ...
  0,  1,  2,  2,  2,  2,  ...
  0,  2,  2,  3,  3,  3,  ...
  0,  2,  4,  4,  5,  5,  ...
  0,  3,  5,  6,  6,  7,  ...
		

Crossrefs

Main diagonal gives A000041.
Mirror of A061198.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, [1, 0], `if`(k*i*(i+1)/2[0, l[1]*j]+l)(b(n-i*j, i-1, k)), j=0..min(n/i, k))))
        end:
    A:= (n, k)-> b(n$2, k-1)[1]:
    seq(seq(A(n, 1+d-n), n=0..d), d=0..16);  # Alois P. Heinz, Oct 17 2018
  • Mathematica
    Table[Function[k, SeriesCoefficient[Product[(1 - x^(i k))/(1 - x^i), {i, Infinity}], {x, 0, n}]][j - n + 1], {j, 0, 12}, {n, 0, j}] // Flatten
    Table[Function[k, SeriesCoefficient[QPochhammer[x^k, x^k]/QPochhammer[x, x], {x, 0, n}]][j - n + 1], {j, 0, 12}, {n, 0, j}] // Flatten

Formula

G.f. of column k: Product_{j>=1} (1 - x^(k*j))/(1 - x^j).

A284344 Sum of the divisors of n that are not divisible by 10.

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 8, 15, 13, 8, 12, 28, 14, 24, 24, 31, 18, 39, 20, 12, 32, 36, 24, 60, 31, 42, 40, 56, 30, 32, 32, 63, 48, 54, 48, 91, 38, 60, 56, 20, 42, 96, 44, 84, 78, 72, 48, 124, 57, 33, 72, 98, 54, 120, 72, 120, 80, 90, 60, 48, 62, 96, 104, 127, 84, 144
Offset: 1

Views

Author

Seiichi Manyama, Mar 25 2017

Keywords

Crossrefs

Cf. A261776.
Cf. Sum of the divisors of n that are not divisible by k: A046913 (k=3), A046897 (k=4), A116073 (k=5), A284326 (k=6), A113957 (k=7), A284341 (k=8), A116607 (k=9), this sequence (k=10).

Programs

  • Mathematica
    Table[Sum[Boole[Mod[d, 10]>0] d , {d, Divisors[n]}], {n, 100}] (* Indranil Ghosh, Mar 25 2017 *)
    Table[Total[Select[Divisors[n],Last[IntegerDigits[#]]!=0&]],{n,70}] (* Harvey P. Dale, Jun 29 2022 *)
  • PARI
    for(n=1, 100, print1(sumdiv(n, d, ((d%10)>0)*d), ", ")) \\ Indranil Ghosh, Mar 25 2017
    
  • Python
    from sympy import divisors
    print([sum([i for i in divisors(n) if i%10]) for n in range(1, 101)]) # Indranil Ghosh, Mar 25 2017

Formula

G.f.: Sum_{k>=1} k*x^k/(1 - x^k) - 10*k*x^(10*k)/(1 - x^(10*k)). - Ilya Gutkovskiy, Mar 25 2017
Sum_{k=1..n} a(k) ~ (3*Pi^2/40) * n^2. - Amiram Eldar, Oct 04 2022

A213598 Number of partitions of n in which no parts are multiples of 49.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176, 231, 297, 385, 490, 627, 792, 1002, 1255, 1575, 1958, 2436, 3010, 3718, 4565, 5604, 6842, 8349, 10143, 12310, 14883, 17977, 21637, 26015, 31185, 37338, 44583, 53174, 63261, 75175, 89134, 105558, 124754, 147273, 173524
Offset: 0

Views

Author

Michael Somos, Jun 14 2012

Keywords

Comments

For n<49 we have a(n)=A000041(n), for n>=49 a(n)!=A000041(n).
In Fricke page 401, he gives the expansion sigma(omega) = q^4 + q^6 + 2q^8 + 3q^10 + 5q^12 + 7q^14 + 11q^16 + 15q^18 + ... where q = exp( Pi i omega).

Examples

			G.f. = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 15*x^7 + 22*x^8 + ...
G.f. = q^2 + q^3 + 2*q^4 + 3*q^5 + 5*q^6 + 7*q^7 + 11*q^8 + 15*q^9 + 22*q^10 + ...
		

References

  • R. Fricke, Die elliptischen Funktionen und ihre Anwendungen, Teubner, 1922, Vol. 2, see p. 401. Eq. (49)

Crossrefs

Cf. A000009 (m=2), A000726 (m=3), A001935 (m=4), A035959 (m=5), A219601 (m=6), A035985 (m=7), A261775 (m=8), A104502 (m=9), A261776 (m=10), A092885 (m=25), this sequence (m=49).

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ Product[ 1 - x^k, {k, 49, n, 49}] / Product[ 1 - x^k, {k, n}], {x, 0, n}];
    a[ n_] := SeriesCoefficient[ QPochhammer[ x^49] / QPochhammer[ x], {x, 0, n}]; (* Michael Somos, May 13 2014 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^49 + A) / eta(x + A), n))};

Formula

Expansion of q^(-2) * eta(q^49) / eta(q) in powers of q.
Euler transform of period 49 sequence [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, ...].
Given g.f. A(x) then B(x) = x^2 * A(x) satisfies 0 = f(B(x), B(x^2),
B(x^4)) where f(u, v, w) = u * v * w * (1 - 7*v^2) - (v - w) * (u - v) * (v^2 - u*w).
G.f. is a period 1 Fourier series which satisfies f(-1 / (49 t)) = 1 / (7 f(t)) where q = exp(2 Pi i t).
G.f.: Product_{k>0} (1 - x^(49*k)) / (1 - x^k).
a(n) ~ exp(4*Pi*sqrt(2*n)/7) / (2^(1/4) * 7^(3/2) * n^(3/4)). - Vaclav Kotesovec, Oct 14 2015
a(n) = (1/n)*Sum_{k=1..n} A287926(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Jun 16 2017

A320612 Number of parts in all partitions of n in which no part occurs more than nine times.

Original entry on oeis.org

1, 3, 6, 12, 20, 35, 54, 86, 128, 182, 264, 376, 520, 718, 978, 1318, 1761, 2338, 3070, 4008, 5206, 6707, 8604, 10982, 13933, 17604, 22155, 27745, 34627, 43061, 53338, 65859, 81074, 99458, 121687, 148469, 180633, 219202, 265386, 320473, 386147, 464245, 556925
Offset: 1

Views

Author

Alois P. Heinz, Oct 17 2018

Keywords

Crossrefs

Column k=9 of A210485.
Cf. A261776.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(9*i*(i+1)/2 [0, l[1]*j]+l)(b(n-i*j, min(n-i*j, i-1))), j=0..min(n/i, 9))))
        end:
    a:= n-> b(n$2)[2]:
    seq(a(n), n=1..50);
  • Mathematica
    Table[Length[  Flatten[Select[IntegerPartitions[n], Max[Tally[#][[All, 2]]] <= 9 &]]], {n, 43}] (* Robert Price, Jul 31 2020 *)

Formula

a(n) ~ log(10) * exp(Pi*sqrt(3*n/5)) / (2 * Pi * 15^(1/4) * n^(1/4)). - Vaclav Kotesovec, Oct 18 2018

A061196 If n = Sum_{i} c_i * 10^i then let b(n) = Sum_{i} c_i * (i+1). Order the integers by b(n) and then n.

Original entry on oeis.org

0, 1, 2, 10, 3, 11, 100, 4, 12, 20, 101, 1000, 5, 13, 21, 102, 110, 1001, 10000, 6, 14, 22, 30, 103, 111, 200, 1002, 1010, 10001, 100000, 7, 15, 23, 31, 104, 112, 120, 201, 1003, 1011, 1100, 10002, 10010, 100001, 1000000, 8, 16, 24, 32, 40, 105, 113, 121, 202
Offset: 0

Views

Author

Henry Bottomley, Apr 20 2001

Keywords

Comments

This is in effect a listing of single-digit (nonnegative) solutions to b + 2c + 3d + 4e + ... = k.
The sequence can be considered as an irregular triangle listing partitions in which no part occurs more than 9 times. The row lengths are given by A261776. For example, in row 5 the value 102, corresponds to the partition 1+1+3 (= 2*1 + 0*2 + 1*3). - Andrew Howroyd, Apr 25 2023

Examples

			From _Andrew Howroyd_, Apr 25 2023: (Start)
The sequence as a triangle T(n,k) begins:
  0 | 0;
  1 | 1;
  2 | 2, 10;
  3 | 3, 11, 100;
  4 | 4, 12,  20, 101, 1000;
  5 | 5, 13,  21, 102,  110, 1001, 10000;
  6 | 6, 14,  22,  30,  103,  111,   200, 1002, 1010, 10001, 100000;
  ...
(End)
		

Crossrefs

Programs

  • Mathematica
    With[{k = 7}, {{0}}~Join~Values@ PositionIndex[Array[Total@ MapIndexed[#1*First[#2] &, Reverse@ IntegerDigits[#]] &, 10^k]][[1 ;; k]]] // Flatten (* Michael De Vlieger, Dec 22 2022, solution only suitable for generating the data field *)
  • PARI
    F(p)={my(v=vector(if(#p, p[#p], 1))); for(i=1, #p, v[p[i]]++); v}
    row(n)={my(R=[F(p) | p<-partitions(n)]); vecsort([fromdigits(Vecrev(u)) | u<-R, vecmax(u)<=9])}
    { for(n=0, 7, print(row(n))) } \\ Andrew Howroyd, Apr 25 2023

Formula

For n < 10, a(A000070(n)) = n+1 and a(A026905(n)) = 10^(n-1).
Previous Showing 11-15 of 15 results.