cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A352651 a(n) = ( binomial(5*n,2*n)*binomial(5*n/2,2*n)*binomial(2*n,n)^2 ) / binomial(5*n/2,n)^2.

Original entry on oeis.org

1, 12, 378, 14700, 629850, 28540512, 1341310320, 64676424384, 3178603964250, 158529793422000, 7999466594747628, 407514796591710600, 20924507330066816112, 1081581197431986720000, 56225684939117297889600, 2937292879652230377427200, 154108110471294720105987930
Offset: 0

Views

Author

Peter Bala, Mar 25 2022

Keywords

Comments

We write x! as shorthand for Gamma(x+1) and binomial(x,y) as shorthand for x!/(y!*(x-y)!) = Gamma(x+1)/(Gamma(y+1)*Gamma(x-y+1)). Given two sequences of numbers c = (c_1, c_2, ..., c_K) and d = (d_1, d_2, ..., d_L) where c_1 + ... + c_K = d_1 + ... + d_L we can define the factorial ratio sequence u_n(c, d) = (c_1*n)!*(c_2*n)!* ... *(c_K*n)!/ ( (d_1*n)!*(d_2*n)!* ... *(d_L*n)! ) and ask whether it is integral for all n >= 0. The integer L - K is called the height of the sequence. Bober completed the classification of integral factorial ratio sequences of height 1. Soundararajan gives many examples of two-parameter families of integral factorial ratio sequences of height 2.
It is usually assumed that the c's and d's are integers but here we allow for some of the c's and d's to be rational numbers. See A276098 and the cross references for further examples of this type.
Conjecture: the supercongruences a(n*p^k) == a(n*p^(k-1)) (mod p^(3*k)) hold for all primes p >= 5 and positive integers n and k. The case n = k = 1 is easily proved.
More generally, for an integer N not equal to 0 or 1, the height 2 factorial ratio sequence whose n-th term is given by ( binomial(N*n,2*n)* binomial(N*n/2,2*n)* binomial(2*n,n)^2 )/binomial(N*n/2,n)^2 is conjectured to be integral and satisfy the same supercongruences. This is the case N = 5. See A352652 (N = 7)

Examples

			Examples of supercongruences:
a(2*7) - a(2) = 56225684939117297889600 - 378 = 2*(3^3)*(7^4)*6553*411473* 160830097 == 0 (mod 7^4).
a(13) - a(1) = 1081581197431986720000 - 12 = (2^2)*3*(13^3)* 41024927834622467 == 0 (mod 13^3)
		

Crossrefs

Programs

  • Maple
    a := n -> if n = 0 then 1 elif n = 1 then 12 else
    5*(3*n - 2)*(3*n - 4)*(5*n - 1)*(5*n - 3)*(5*n - 7)*(5*n - 9)/(n^2*(n - 1)^2*(3*n - 1)*(3*n - 5))*a(n-2) end if:
    seq(a(n), n = 0..20);
  • Python
    from math import factorial
    from sympy import factorial2
    def A352651(n): return int(factorial(5*n)*factorial2(3*n)**2//factorial(3*n)//factorial2(5*n)//factorial(n)**2//factorial2(n)) # Chai Wah Wu, Aug 08 2023

Formula

a(n) = (5*n)!*(3*n/2)!^2/( (3*n)!*(5*n/2)!*n!^2*(n/2)! ).
a(n) = 3*Sum_{k = 0..n} (-1)^(n+k)*binomial(5*n,n-k)*binomial(3*n+k-1,k)^2 for n >= 1 (this formula shows the sequence is integral).
a(n) = 3*Sum_{k = 0..n} binomial(2*n-k-2,n-k)*binomial(3*n-1,k)^2 for n >= 1.
a(n) = 3 * [x^n] ( (1 - x)^(2*n) * P(3*n-1,(1 + x)/(1 - x)) ) for n >= 1, where P(n,x) denotes the n-th Legendre polynomial.
a(n) ~ (sqrt(3)/Pi)*(5^n)^(5/2)*( 1/(2*n) - 2/(15*n^2) + 4/(225*n^3) + O(1/n^4) ).
a(n) = A008978(n)/A275652(n).
a(n) = binomial(3*n/2,n)*A262732(n).
a(n) = 3*(-1)^n*binomial(5*n,n)*hypergeom([-n, 3*n, 3*n], [1, 4*n+1], 1) for n >= 1.
a(n) = 5*(3*n-2)*(3*n-4)*(5*n-1)*(5*n-3)*(5*n-7)*(5*n-9)/(n^2*(n-1)^2*(3*n- 1)*(3*n-5)) * a(n-2) with a(0) = 1 and a(1) = 12.
a(p) == 12 (mod p^3) for prime p >= 5.
O.g.f.: A(x) = hypergeom([1/10, 3/10, 7/10, 9/10, 1/3, 2/3], [1/6, 5/6, 1/2, 1/2, 1], (5^5)*x^2) + 12*x*hypergeom([3/5, 4/5, 6/5, 7/5, 5/6, 7/6], [2/3, 4/3, 3/2, 3/2, 1], (5^5)*x^2).

A330843 Square array T(n,k) = [x^n] ((1+x)^(k+1) / (1-x)^(k-1))^n, n>=0, k>=0, read by descending antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 2, -2, 1, 4, 6, 0, 1, 6, 30, 20, 6, 1, 8, 70, 256, 70, 0, 1, 10, 126, 924, 2310, 252, -20, 1, 12, 198, 2240, 12870, 21504, 924, 0, 1, 14, 286, 4420, 41990, 184756, 204204, 3432, 70, 1, 16, 390, 7680, 104006, 811008, 2704156, 1966080, 12870, 0
Offset: 0

Views

Author

Seiichi Manyama, Feb 07 2020

Keywords

Examples

			Square array begins:
    1,   1,     1,      1,      1,       1, ...
    0,   2,     4,      6,      8,      10, ...
   -2,   6,    30,     70,    126,     198, ...
    0,  20,   256,    924,   2240,    4420, ...
    6,  70,  2310,  12870,  41990,  104006, ...
    0, 252, 21504, 184756, 811008, 2521260, ...
		

Crossrefs

Columns k=1..7 give A000984, A091527, A001448, A262732, A211419, A262733, A211421.
Main diagonal is A332231.

Programs

  • Mathematica
    T[n_, k_] := Sum[Binomial[(k + 1)*n, j] * Binomial[k*n - j - 1, n - j], {j, 0, n}]; Table[T[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, May 05 2021 *)

Formula

T(n,k) = Sum_{j=0..n} binomial((k+1)*n,j) * binomial(k*n-j-1,n-j).
T(n,k) = 1/n! * ((k+1)*n)!/Gamma(1 + (k+1)*n/2) * Gamma(1 + (k-1)*n/2)/((k-1)*n)!.

A115293 Row sums of correlation triangle for (1+x)^3/(1-x).

Original entry on oeis.org

1, 8, 31, 80, 160, 272, 416, 592, 800, 1040, 1312, 1616, 1952, 2320, 2720, 3152, 3616, 4112, 4640, 5200, 5792, 6416, 7072, 7760, 8480, 9232, 10016, 10832, 11680, 12560, 13472, 14416, 15392, 16400, 17440, 18512, 19616, 20752, 21920, 23120, 24352
Offset: 0

Views

Author

Paul Barry, Jan 19 2006

Keywords

Comments

Row sums of number triangle A115292.
If Y_i (i=1,2,3,4,5) are 2-blocks of a (n+5)-set X then a(n-2) is the number of 7-subsets of X intersecting each Y_i (i=1,2,3,4,5). - Milan Janjic, Oct 28 2007

Crossrefs

Programs

  • Maple
    seq(add(binomial(5,n-k)*binomial(k+2,k), k = 0..n), n = 0..40); # Peter Bala, Sep 26 2021
  • Mathematica
    LinearRecurrence[{3,-3,1},{1,8,31,80,160,272},50] (* Harvey P. Dale, Dec 03 2018 *)
  • PARI
    a(n) = sum(k = 0, n, binomial(5,n-k)*binomial(k+2,k)); \\ Michel Marcus, Oct 01 2021

Formula

G.f.: A(x) = (1+x)^5/(1-x)^3.
a(n) = Sum_{k = 0..n} Sum_{j = 0..n} [j<=k]*A115291(k-j)*[j<=n-k]*A115291(n-k-j).
From Peter Bala, Sep 26 2021: (Start)
a(n) = Sum_{k = 0..n} binomial(5,n-k)*binomial(k+2,k).
A262732(n) = [x^n] A(x)^n. (End)

A364402 a(n) = (3*n)!*(10*n)!/((2*n)!*(5*n)!*(6*n)!).

Original entry on oeis.org

1, 126, 41990, 15967980, 6421422150, 2663825039876, 1127155102890908, 483537022180231320, 209536624110664757830, 91505601042318156186900, 40205863224219682380130740, 17753412284992688334256754280, 7871411119532225034145860092700, 3502017467737750755575471520717480
Offset: 0

Views

Author

Neven Sajko, Jul 22 2023

Keywords

Comments

Member of Bober's second infinite family of integral factorial ratio sequences with a=5 and b=3 (see equation 11 at p. 16 in Bober).

Crossrefs

Bisection of A262732. Cf. A182400, A211419.

Programs

  • Maple
    seq( (3*n)!*(10*n)!/((2*n)!*(5*n)!*(6*n)!), n = 0..20); # Peter Bala, Sep 24 2023
  • PARI
    a(n) = (3*n)!*(10*n)!/((2*n)!*(5*n)!*(6*n)!); \\ Michel Marcus, Sep 20 2023

Formula

a(n) = 10*(10*n - 1)*(10*n - 3)*(10*n - 7)*(10*n - 9)/(3*n*(2*n - 1)*(6*n - 1)*(6*n - 5))*a(n-1).
a(n) ~ 2^(2*n-1) * 5^(5*n) / (sqrt(Pi*n) * 3^(3*n)). - Vaclav Kotesovec, Sep 21 2023
From Peter Bala, Sep 24 2023: (Start)
a(n) = A262732(2*n).
a(n) = [x^(2*n)] (1 + 4*x)^((10*n-1)/2) = 16^n * binomial((10*n-1)/2, 2*n).
O.g.f. A(x) = hypergeom([9/10, 7/10, 3/10, 1/10], [5/6, 1/2, 1/6], (12500/27)*x).
(End)
Previous Showing 11-14 of 14 results.