A349153
Numbers k such that the k-th composition in standard order has sum equal to twice its reverse-alternating sum.
Original entry on oeis.org
0, 11, 12, 14, 133, 138, 143, 148, 155, 158, 160, 168, 179, 182, 188, 195, 198, 204, 208, 216, 227, 230, 236, 240, 248, 2057, 2066, 2071, 2077, 2084, 2091, 2094, 2101, 2106, 2111, 2120, 2131, 2134, 2140, 2149, 2154, 2159, 2164, 2171, 2174, 2192, 2211, 2214
Offset: 1
The terms and corresponding compositions begin:
0: ()
11: (2,1,1)
12: (1,3)
14: (1,1,2)
133: (5,2,1)
138: (4,2,2)
143: (4,1,1,1,1)
148: (3,2,3)
155: (3,1,2,1,1)
158: (3,1,1,1,2)
160: (2,6)
168: (2,2,4)
179: (2,1,3,1,1)
182: (2,1,2,1,2)
188: (2,1,1,1,3)
These compositions are counted by
A262977 up to 0's.
The unreversed negative version is
A349154.
A non-reverse unordered version is
A349159, counted by
A000712 up to 0's.
A003242 counts Carlitz compositions.
A025047 counts alternating or wiggly compositions, complement
A345192.
A116406 counts compositions with alternating sum >=0, ranked by
A345913.
A138364 counts compositions with alternating sum 0, ranked by
A344619.
Cf.
A000070,
A000346,
A001250,
A001700,
A008549,
A027306,
A058622,
A088218,
A114121,
A120452,
A294175.
Statistics of standard compositions:
- The compositions themselves are the rows of
A066099.
- Heinz number is given by
A333219.
Classes of standard compositions:
-
stc[n_]:=Differences[ Prepend[Join@@Position[ Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}];
Select[Range[0,1000],Total[stc[#]]==2*sats[stc[#]]&]
A357847
Number of integer compositions of n whose length is twice their alternating sum.
Original entry on oeis.org
1, 0, 0, 1, 0, 1, 3, 1, 8, 11, 15, 46, 59, 127, 259, 407, 888, 1591, 2925, 5896, 10607, 20582, 39446, 73448, 142691, 269777, 513721, 988638, 1876107, 3600313, 6893509, 13165219, 25288200, 48408011, 92824505, 178248758, 341801149, 656641084, 1261298356
Offset: 0
The a(0) = 1 through a(9) = 15 compositions:
() . . (21) . (32) (1131) (43) (1142) (54)
(2121) (1241) (111141)
(3111) (2132) (112131)
(2231) (113121)
(3122) (114111)
(3221) (211131)
(4112) (212121)
(4211) (213111)
(311121)
(312111)
(411111)
A025047 counts alternating compositions.
A357136 counts compositions by alternating sum, full triangle
A097805.
A357182 counts compositions w/ length = alternating sum, ranked by
A357184.
A357189 counts partitions w/ length = alternating sum, ranked by
A357486.
-
ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
Table[Length[Select[Join @@ Permutations/@IntegerPartitions[n],Length[#]==2ats[#]&]],{n,0,10}]
A371814
a(n) = Sum_{k=0..n} (-1)^k * binomial(4*n-k-1,n-k).
Original entry on oeis.org
1, 2, 16, 128, 1068, 9142, 79612, 701864, 6244892, 55962920, 504375396, 4567003520, 41513817444, 378596616452, 3462411408136, 31742042431048, 291616814436124, 2684123914512280, 24746511514749280, 228491677484832896, 2112549277665243328
Offset: 0
A387034
a(n) = Sum_{k=0..n} binomial(4*n-4,k).
Original entry on oeis.org
1, 1, 11, 93, 794, 6885, 60460, 536155, 4791323, 43081973, 389329652, 3533047572, 32174057272, 293874981603, 2691171713924, 24700051833634, 227150464141969, 2092620625940629, 19308393192688804, 178406554524801820, 1650535921328322392, 15287533448476027572
Offset: 0
-
[&+[Binomial(4*n-4, k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Sep 03 2025
-
Table[Sum[Binomial[4*n-4,k], {k,0,n}], {n,0,25}] (* Vaclav Kotesovec, Aug 20 2025 *)
-
a(n) = sum(k=0, n, binomial(4*n-4, k));
A387035
a(n) = Sum_{k=0..n} binomial(4*n-3,k).
Original entry on oeis.org
1, 2, 16, 130, 1093, 9402, 82160, 726206, 6474541, 58115146, 524472448, 4754293704, 43257431931, 394821713910, 3613377083248, 33146854168628, 304692552429413, 2805871076597738, 25880523571338272, 239058748663208600, 2211058130414688244, 20474163633488699944
Offset: 0
-
[&+[Binomial(4*n-3, k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Sep 03 2025
-
Table[Sum[Binomial[4*n-3,k],{k,0,n}],{n,0,30}] (* Vincenzo Librandi, Sep 03 2025 *)
-
a(n) = sum(k=0, n, binomial(4*n-3, k));
A387036
a(n) = Sum_{k=0..n} binomial(4*n-2,k).
Original entry on oeis.org
1, 3, 22, 176, 1471, 12616, 110056, 971712, 8656937, 77663192, 700614760, 6349125440, 57754842117, 527046644056, 4822774262296, 44235726874816, 406582639811581, 3743845040832376, 34529632747211560, 318931047174438720, 2949641596923575548, 27312107861301870368
Offset: 0
-
[&+[Binomial(4*n-2, k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Sep 03 2025
-
Table[Sum[Binomial[4*n-2,k],{k,0,n}],{n,0,30}] (* Vincenzo Librandi, Sep 03 2025 *)
-
a(n) = sum(k=0, n, binomial(4*n-2, k));
A357709
Number of integer partitions of n whose length is twice their alternating sum.
Original entry on oeis.org
1, 0, 0, 1, 0, 1, 1, 1, 2, 2, 4, 3, 6, 6, 9, 11, 13, 18, 21, 28, 32, 44, 49, 65, 76, 96, 114, 141, 170, 204, 250, 295, 361, 425, 516, 606, 734, 858, 1031, 1210, 1440, 1690, 2000, 2347, 2759, 3240, 3786, 4441, 5174, 6053, 7030, 8210, 9509, 11074, 12807, 14870
Offset: 0
The a(1) = 0 through a(12) = 6 partitions:
. . 21 . 32 3111 43 3221 54 3331 65 4332
4211 411111 4222 422111 4431
4321 521111 5322
5311 5421
6411
51111111
The version for compositions is
A357847.
These partitions are ranked by
A357848.
A025047 counts alternating compositions.
A357136 counts compositions by alternating sum, full triangle
A097805.
A357182 counts compositions w/ length = alternating sum, ranked by
A357184.
-
ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
Table[Length[Select[IntegerPartitions[n],Length[#]==2ats[#]&]],{n,0,30}]
A357848
Heinz numbers of integer partitions whose length is twice their alternating sum.
Original entry on oeis.org
1, 6, 15, 35, 40, 77, 84, 90, 143, 189, 210, 220, 221, 224, 250, 323, 364, 437, 462, 490, 495, 504, 525, 528, 667, 748, 819, 858, 899, 988, 1029, 1040, 1134, 1147, 1155, 1188, 1210, 1320, 1326, 1375, 1400, 1408, 1517, 1564, 1683, 1690, 1763, 1904, 1938, 2021
Offset: 1
The terms together with their prime indices begin:
1: {}
6: {1,2}
15: {2,3}
35: {3,4}
40: {1,1,1,3}
77: {4,5}
84: {1,1,2,4}
90: {1,2,2,3}
143: {5,6}
189: {2,2,2,4}
210: {1,2,3,4}
220: {1,1,3,5}
221: {6,7}
224: {1,1,1,1,1,4}
These partitions are counted by
A357709.
The version for compositions is counted by
A357847.
A025047 counts alternating compositions.
A357136 counts compositions by alternating sum, full triangle
A097805.
A357182 counts compositions w/ length = alternating sum, ranked by
A357184.
A357189 counts partitions w/ length = alternating sum, ranked by
A357486.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}];
Select[Range[1000],Length[primeMS[#]]==2sats[primeMS[#]]&]
A371817
a(n) = Sum_{k=0..floor(n/3)} (-1)^k * binomial(4*n-3*k-1,n-3*k).
Original entry on oeis.org
1, 3, 21, 164, 1353, 11508, 99808, 877425, 7790745, 69704921, 627438606, 5675535000, 51546958296, 469764721533, 4293594852225, 39341599326304, 361271345551257, 3323924166943410, 30634431485945569, 282767849049333909, 2613630939017216898
Offset: 0
A371815
a(n) = Sum_{k=0..floor(n/2)} (-1)^k * binomial(4*n-2*k-1,n-2*k).
Original entry on oeis.org
1, 3, 20, 156, 1288, 10963, 95132, 836650, 7430956, 66501696, 598720080, 5416612336, 49201807276, 448442474938, 4099103160424, 37562606691526, 344959939645980, 3174051631201636, 29254814741949680, 270047153053464712, 2496167217049673468
Offset: 0
Comments