cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 70 results. Next

A278237 a(n) = A046523(A263273(n)).

Original entry on oeis.org

1, 2, 2, 4, 2, 6, 2, 8, 4, 6, 2, 12, 2, 6, 6, 16, 4, 12, 2, 12, 6, 6, 2, 24, 2, 6, 8, 12, 6, 30, 2, 64, 6, 6, 2, 36, 2, 6, 6, 24, 2, 30, 4, 12, 12, 6, 2, 48, 2, 30, 12, 12, 2, 24, 2, 24, 6, 6, 6, 60, 2, 6, 12, 32, 2, 30, 2, 12, 6, 12, 6, 72, 6, 6, 6, 12, 2, 30, 2, 48, 16, 6, 2, 60, 2, 30, 30, 24, 6, 60, 6, 12, 6, 6, 2, 192, 6, 6, 12, 36, 2, 30, 2, 48, 6, 30, 6
Offset: 1

Views

Author

Antti Karttunen, Nov 16 2016

Keywords

Comments

This sequence works as a "sentinel" for A263273 by matching to any sequence that is obtained as f(A263273(n)), where f(n) is any function that depends only on the prime signature of n (see the index entry for "sequences computed from exponents in ..."). As of Nov 11 2016 no such sequences were present in the database, although a prefix of A050361 at first seemed to match. Note that A050361 really matches with A046523.

Crossrefs

Cf. A263273.
Differs from A046523 for the first time at n=17, where a(17)=4, while A046523(17)=2.
Cf. A050361.

Programs

Formula

a(n) = A046523(A263273(n)).

A381618 Reverse the Chung-Graham representation of n while preserving its trailing zeros: a(n) = A381607(A263273(A381608(n))).

Original entry on oeis.org

0, 1, 2, 3, 4, 7, 6, 5, 8, 9, 17, 11, 12, 20, 19, 15, 16, 10, 18, 14, 13, 21, 22, 43, 24, 30, 51, 45, 38, 29, 25, 46, 32, 33, 54, 53, 41, 50, 28, 49, 40, 36, 42, 23, 44, 27, 31, 52, 48, 39, 37, 26, 47, 35, 34, 55, 56, 111, 58, 77, 132, 113, 98, 63, 64, 119, 79
Offset: 0

Views

Author

Rémy Sigrist, Mar 02 2025

Keywords

Comments

This sequence is a self-inverse permutation of the nonnegative integers.

Examples

			The first terms, alongside their Chung-Graham representation, are:
  n   a(n)  A381579(n)  A381579(a(n))
  --  ----  ----------  -------------
   0     0           0              0
   1     1           1              1
   2     2           2              2
   3     3          10             10
   4     4          11             11
   5     7          12             21
   6     6          20             20
   7     5          21             12
   8     8         100            100
   9     9         101            101
  10    17         102            201
  11    11         110            110
  12    12         111            111
  13    20         112            211
  14    19         120            210
  15    15         121            121
  16    16         200            200
		

Crossrefs

See A345201 for a similar sequence.

Programs

  • PARI
    A381607(n) = { my (t = Vecrev(digits(n, 3))); sum(k = 1, #t, t[k] * fibonacci(2*k)); }
    A263273(n) = { my (t = 3^if (n, valuation(n, 3), 0)); t * fromdigits(Vecrev(digits(n / t, 3)), 3) }
    A381608(n) = { for (k = 1, oo, my (f = fibonacci(2*k)); if (f >= n, my (v = 0); while (n, while (n >= f, n -= f; v += 3^(k-1);); f = fibonacci(2*k--);); return (v););); }
    a(n) = A381607(A263273(A381608(n)))

Formula

a(n) <= A000045(2*k) iff n <= A000045(2*k).

A057889 Bijective bit-reverse of n: keep the trailing zeros in the binary expansion of n fixed, but reverse all the digits up to that point.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 12, 11, 14, 15, 16, 17, 18, 25, 20, 21, 26, 29, 24, 19, 22, 27, 28, 23, 30, 31, 32, 33, 34, 49, 36, 41, 50, 57, 40, 37, 42, 53, 52, 45, 58, 61, 48, 35, 38, 51, 44, 43, 54, 59, 56, 39, 46, 55, 60, 47, 62, 63, 64, 65, 66, 97, 68, 81, 98, 113
Offset: 0

Views

Author

Marc LeBrun, Sep 25 2000

Keywords

Comments

The original name was "Bit-reverse of n, including as many leading as trailing zeros." - Antti Karttunen, Dec 25 2024
A permutation of integers consisting only of fixed points and pairs. a(n)=n when n is a binary palindrome (including as many leading as trailing zeros), otherwise a(n)=A003010(n) (i.e. n has no axis of symmetry). A057890 gives the palindromes (fixed points, akin to A006995) while A057891 gives the "antidromes" (pairs). See also A280505.
This is multiplicative in domain GF(2)[X], i.e. with carryless binary arithmetic. A193231 is another such permutation of natural numbers. - Antti Karttunen, Dec 25 2024

Examples

			a(6)=6 because 0110 is a palindrome, but a(11)=13 because 1011 reverses into 1101.
		

Crossrefs

Cf. A030101, A000265, A006519, A006995, A057890, A057891, A280505, A280508, A331166 [= min(n,a(n))], A366378 [k for which a(k) = k (mod 3)], A369044 [= A014963(a(n))].
Similar permutations for other bases: A263273 (base-3), A264994 (base-4), A264995 (base-5), A264979 (base-9).
Other related (binary) permutations: A056539, A193231.
Compositions of this permutation with other binary (or other base-related) permutations: A264965, A264966, A265329, A265369, A379471, A379472.
Compositions with permutations involving prime factorization: A245450, A245453, A266402, A266404, A293448, A366275, A366276.
Other derived permutations: A246200 [= a(3*n)/3], A266351, A302027, A302028, A345201, A356331, A356332, A356759, A366389.
See also A235027 (which is not a permutation).

Programs

  • Mathematica
    Table[FromDigits[Reverse[IntegerDigits[n, 2]], 2]*2^IntegerExponent[n, 2], {n, 71}] (* Ivan Neretin, Jul 09 2015 *)
  • PARI
    A030101(n) = if(n<1,0,subst(Polrev(binary(n)),x,2));
    A057889(n) = if(!n,n,A030101(n/(2^valuation(n,2))) * (2^valuation(n, 2))); \\ Antti Karttunen, Dec 25 2024
  • Python
    def a(n):
        x = bin(n)[2:]
        y = x[::-1]
        return int(str(int(y))+(len(x) - len(str(int(y))))*'0', 2)
    print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 11 2017
    
  • Python
    def A057889(n): return int(bin(n>>(m:=(~n&n-1).bit_length()))[-1:1:-1],2)<Chai Wah Wu, Dec 25 2024
    

Formula

a(n) = A030101(A000265(n)) * A006519(n), with a(0)=0.

Extensions

Clarified the name with May 30 2016 comment from N. J. A. Sloane, and moved the old name to the comments - Antti Karttunen, Dec 25 2024

A004488 Tersum n + n.

Original entry on oeis.org

0, 2, 1, 6, 8, 7, 3, 5, 4, 18, 20, 19, 24, 26, 25, 21, 23, 22, 9, 11, 10, 15, 17, 16, 12, 14, 13, 54, 56, 55, 60, 62, 61, 57, 59, 58, 72, 74, 73, 78, 80, 79, 75, 77, 76, 63, 65, 64, 69, 71, 70, 66, 68, 67, 27, 29, 28, 33, 35, 34, 30, 32, 31, 45, 47, 46, 51
Offset: 0

Views

Author

Keywords

Comments

Could also be described as "Write n in base 3, then replace each digit with its base-3 negative" as with A048647 for base 4. - Henry Bottomley, Apr 19 2000
a(a(n)) = n, a self-inverse permutation of the nonnegative integers. - Reinhard Zumkeller, Dec 19 2003
First 3^n terms of the sequence form a permutation s(n) of 0..3^n-1, n>=1; the number of inversions of s(n) is A016142(n-1). - Gheorghe Coserea, Apr 23 2018

Crossrefs

Programs

  • Haskell
    a004488 0 = 0
    a004488 n = if d == 0 then 3 * a004488 n' else 3 * a004488 n' + 3 - d
                where (n', d) = divMod n 3
    -- Reinhard Zumkeller, Mar 12 2014
    
  • Maple
    a:= proc(n) local t, r, i;
          t, r:= n, 0;
          for i from 0 while t>0 do
            r:= r+3^i *irem(2*irem(t, 3, 't'), 3)
          od; r
        end:
    seq(a(n), n=0..80);  # Alois P. Heinz, Sep 07 2011
  • Mathematica
    a[n_] := FromDigits[Mod[3-IntegerDigits[n, 3], 3], 3]; Table[a[n], {n, 0, 66}] (* Jean-François Alcover, Mar 03 2014 *)
  • PARI
    a(n) = my(b=3); fromdigits(apply(d->(b-d)%b, digits(n, b)), b);
    vector(67, i, a(i-1))  \\ Gheorghe Coserea, Apr 23 2018
    
  • Python
    from sympy.ntheory.factor_ import digits
    def a(n): return int("".join([str((3 - i)%3) for i in digits(n, 3)[1:]]), 3) # Indranil Ghosh, Jun 06 2017

Formula

Tersum m + n: write m and n in base 3 and add mod 3 with no carries, e.g., 5 + 8 = "21" + "22" = "10" = 1.
a(n) = Sum(3-d(i)-3*0^d(i): n=Sum(d(i)*3^d(i): 0<=d(i)<3)). - Reinhard Zumkeller, Dec 19 2003
a(3*n) = 3*a(n), a(3*n+1) = 3*a(n)+2, a(3*n+2) = 3*a(n)+1. - Robert Israel, May 09 2014

A030102 Base-3 reversal of n (written in base 10).

Original entry on oeis.org

0, 1, 2, 1, 4, 7, 2, 5, 8, 1, 10, 19, 4, 13, 22, 7, 16, 25, 2, 11, 20, 5, 14, 23, 8, 17, 26, 1, 28, 55, 10, 37, 64, 19, 46, 73, 4, 31, 58, 13, 40, 67, 22, 49, 76, 7, 34, 61, 16, 43, 70, 25, 52, 79, 2, 29, 56, 11, 38, 65, 20, 47, 74, 5, 32, 59, 14, 41, 68, 23, 50, 77, 8, 35, 62, 17, 44, 71
Offset: 0

Views

Author

Keywords

Examples

			a(17) = 25 because 17 in base 3 is 122, and backwards that is 221, which is 25 in base 10.
a(18) = 2 because 18 in base 3 is 200, and backwards that is 2.
		

Crossrefs

Cf. A030341.
Cf. A263273 for a bijective variant.

Programs

  • Haskell
    a030102 = foldl (\v d -> 3 * v + d) 0 . a030341_row
    -- Reinhard Zumkeller, Dec 16 2013
  • Maple
    a030102:= proc(n) option remember;
      local y;
      y:= n mod 3;
      3^ilog[3](n)*y + procname((n-y)/3)
    end proc:
    for i from 0 to 2 do a030102(i):= i od:
    seq(a030102(i),i=0..100); # Robert Israel, Dec 24 2015
    # alternative
    A030102 := proc(n)
        local r ;
        r := ListTools[Reverse](convert(n,base,3)) ;
        add(op(i,r)*3^(i-1),i=1..nops(r)) ;
    end proc: # R. J. Mathar, May 28 2016
  • Mathematica
    A030102[n_] := FromDigits[Reverse@IntegerDigits[n, 3], 3] (* JungHwan Min, Dec 23 2015 *)
    FromDigits[#,3]&/@(Reverse/@IntegerDigits[Range[0,80],3]) (* Harvey P. Dale, Feb 05 2020 *)
  • PARI
    a(n,b=3)=subst(Polrev(base(n,b)),x,b) /* where */
    base(n,b)={my(a=[n%b]);while(0M. F. Hasler, Nov 04 2011
    
  • PARI
    a(n) = fromdigits(Vecrev(digits(n, 3)), 3); \\ Michel Marcus, Oct 10 2017
    

Formula

a(n) = t(n,0) with t(n,r) = if n=0 then r else t(floor(n/3),r*3+(n mod 3)). - Reinhard Zumkeller, Mar 04 2010
G.f. G(x) satisfies: G(x) = (1+x+x^2)*G(x^3) - (1+2*x)*(x + 2*Sum_{m>=0} 3^m*x^(3^(m+1)+1)/(x^3-1). - Robert Israel, Dec 24 2015

A264985 Self-inverse permutation of nonnegative integers: a(n) = (A264983(n)-1) / 2.

Original entry on oeis.org

0, 1, 3, 2, 4, 9, 6, 10, 12, 5, 7, 11, 8, 13, 27, 18, 28, 36, 15, 19, 33, 24, 31, 30, 21, 37, 39, 14, 16, 32, 23, 22, 29, 20, 34, 38, 17, 25, 35, 26, 40, 81, 54, 82, 108, 45, 55, 99, 72, 85, 90, 63, 109, 117, 42, 46, 96, 69, 58, 87, 60, 100, 114, 51, 73, 105, 78, 94, 84, 57, 91, 111, 48, 64, 102, 75, 112, 93, 66, 118, 120, 41
Offset: 0

Views

Author

Antti Karttunen, Dec 05 2015

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{g, h}, g[x_] := x/3^IntegerExponent[x, 3]; h[x_] := x/g@ x; If[n == 0, 0, FromDigits[Reverse@ IntegerDigits[#, 3], 3] &@ g[n] h[n]]]; t = Select[f /@ Range@ 1000, OddQ]; Table[(t[[n + 1]] - 1)/2, {n, 0, 81}] (* Michael De Vlieger, Jan 04 2016, after Jean-François Alcover at A263273 *)
  • Python
    from sympy import factorint
    from sympy.ntheory.factor_ import digits
    from operator import mul
    def a030102(n): return 0 if n==0 else int(''.join(map(str, digits(n, 3)[1:][::-1])), 3)
    def a038502(n):
        f=factorint(n)
        return 1 if n==1 else reduce(mul, [1 if i==3 else i**f[i] for i in f])
    def a038500(n): return n/a038502(n)
    def a263273(n): return 0 if n==0 else a030102(a038502(n))*a038500(n)
    def a(n): return (a263273(2*n + 1) - 1)/2 # Indranil Ghosh, May 22 2017
  • Scheme
    (define (A264985 n) (/ (- (A264983 n) 1) 2))
    

Formula

a(n) = (A264983(n)-1) / 2 = (1/2) * (A263273(2n + 1) - 1).

A276623 The infinite trunk of ternary beanstalk: The only infinite sequence such that a(n-1) = a(n) - A053735(a(n)), where A053735(n) = base-3 digit sum of n.

Original entry on oeis.org

0, 2, 4, 8, 10, 12, 16, 20, 26, 28, 30, 34, 38, 42, 46, 52, 56, 62, 68, 72, 80, 82, 84, 88, 92, 96, 100, 106, 110, 116, 122, 126, 134, 140, 144, 152, 160, 164, 170, 176, 180, 188, 194, 198, 204, 212, 216, 224, 232, 242, 244, 246, 250, 254, 258, 262, 268, 272, 278, 284, 288, 296, 302, 306, 314, 322, 326, 332, 338, 342, 350, 356, 360
Offset: 0

Views

Author

Antti Karttunen, Sep 11 2016

Keywords

Crossrefs

Cf. A004128, A024023, A053735, A054861, A261231 (left inverse), A261233, A276622, A276624, A276603 (terms divided by 2), A276604 (first differences).
Cf. A179016, A219648, A219666, A255056, A259934, A276573, A276583, A276613 for similar constructions.
Cf. also A263273.

Programs

Formula

a(n) = A276624(A276622(n)).
Other identities. For all n >= 0:
A261231(a(n)) = n.
a(A261233(n)) = A024023(n) = 3^n - 1.

A325820 Multiplication table for carryless product i X j in base 3 for i >= 0 and j >= 0, read by antidiagonals.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 3, 1, 3, 0, 0, 4, 6, 6, 4, 0, 0, 5, 8, 9, 8, 5, 0, 0, 6, 7, 12, 12, 7, 6, 0, 0, 7, 3, 15, 16, 15, 3, 7, 0, 0, 8, 5, 18, 11, 11, 18, 5, 8, 0, 0, 9, 4, 21, 24, 13, 24, 21, 4, 9, 0, 0, 10, 18, 24, 19, 21, 21, 19, 24, 18, 10, 0, 0, 11, 20, 27, 23, 26, 9, 26, 23, 27, 20, 11, 0, 0, 12, 19, 30, 36, 19, 15, 15, 19, 36, 30, 19, 12, 0
Offset: 0

Views

Author

Antti Karttunen, May 22 2019

Keywords

Examples

			The array begins as:
  0,  0,  0,  0,  0,  0,  0,  0,  0,   0,   0,   0,   0, ...
  0,  1,  2,  3,  4,  5,  6,  7,  8,   9,  10,  11,  12, ...
  0,  2,  1,  6,  8,  7,  3,  5,  4,  18,  20,  19,  24, ...
  0,  3,  6,  9, 12, 15, 18, 21, 24,  27,  30,  33,  36, ...
  0,  4,  8, 12, 16, 11, 24, 19, 23,  36,  40,  44,  48, ...
  0,  5,  7, 15, 11, 13, 21, 26, 19,  45,  50,  52,  33, ...
  0,  6,  3, 18, 24, 21,  9, 15, 12,  54,  60,  57,  72, ...
  0,  7,  5, 21, 19, 26, 15, 13, 11,  63,  70,  68,  57, ...
  0,  8,  4, 24, 23, 19, 12, 11, 16,  72,  80,  76,  69, ...
  0,  9, 18, 27, 36, 45, 54, 63, 72,  81,  90,  99, 108, ...
  0, 10, 20, 30, 40, 50, 60, 70, 80,  90, 100,  83, 120, ...
  0, 11, 19, 33, 44, 52, 57, 68, 76,  99,  83,  91, 132, ...
  0, 12, 24, 36, 48, 33, 72, 57, 69, 108, 120, 132, 144, ...
  etc.
A(2,2) = 2*2 mod 3 = 1.
		

Crossrefs

Cf. A169999 (the main diagonal).
Row/Column 0: A000004, Row/Column 1: A001477, Row/Column 2: A004488, Row/Column 3: A008585, Row/Column 4: A242399, Row/Column 9: A008591.
Cf. A325821 (same table without the zero row and column).
Cf. A048720 (binary), A059692 (decimal), A004247 (full multiply).

Programs

  • PARI
    up_to = 105;
    A325820sq(b, c) = fromdigits(Vec(Pol(digits(b,3))*Pol(digits(c,3)))%3, 3);
    A325820list(up_to) = { my(v = vector(up_to), i=0); for(a=0,oo, for(col=0,a, if(i++ > up_to, return(v)); v[i] = A325820sq(a-col,col))); (v); };
    v325820 = A325820list(up_to);
    A325820(n) = v325820[1+n];

A264989 Self-inverse permutation of nonnegative integers: a(n) = (A264987(n)-1) / 2.

Original entry on oeis.org

0, 1, 2, 5, 4, 3, 6, 7, 11, 14, 16, 8, 17, 13, 9, 18, 10, 12, 15, 19, 20, 47, 22, 29, 56, 34, 38, 41, 43, 23, 50, 49, 32, 59, 25, 35, 44, 52, 26, 53, 40, 27, 54, 28, 36, 45, 55, 21, 48, 31, 30, 57, 37, 39, 42, 46, 24, 51, 58, 33, 60, 61, 101, 128, 142, 74, 155, 67, 83, 164, 88, 110, 137, 169, 65, 146, 103, 92, 173, 115, 119, 122
Offset: 0

Views

Author

Antti Karttunen, Dec 05 2015

Keywords

Crossrefs

Formula

a(n) = (A264987(n)-1) / 2.
a(n) = (1/2) * (A263272((2*n)+1) - 1).
a(n) = (1/4) * (A263273(4n + 2) - 2).

A265345 Square array A(row,col): For row=0, A(0,col) = A265341(col), for row > 0, A(row,col) = A265342(A(row-1,col)).

Original entry on oeis.org

1, 3, 2, 7, 6, 4, 5, 10, 12, 8, 9, 22, 20, 24, 16, 21, 18, 28, 40, 48, 64, 13, 30, 36, 56, 80, 192, 32, 19, 26, 60, 72, 112, 160, 96, 184, 25, 14, 52, 120, 144, 224, 640, 552, 352, 11, 46, 76, 208, 240, 576, 448, 320, 1056, 704, 15, 58, 68, 136, 104, 480, 288, 1720, 1600, 2112, 1408
Offset: 1

Views

Author

Antti Karttunen, Dec 18 2015

Keywords

Comments

Square array A(row,col) is read by downwards antidiagonals as: A(0,0), A(0,1), A(1,0), A(0,2), A(1,1), A(2,0), A(0,3), A(1,2), A(2,1), A(3,0), ...
All the terms in the same column are either all divisible by 3, or none of them are.
Reducing A265342 to its constituent sequences gives A265342(n) = A263273(2*A263273(n)). Iterating this function k times starting from n reduces to (because A263273 is an involution, so pairs of them are canceled) to A263273((2^k)*A263273(n)).

Examples

			The top left corner of the array:
    1,    3,    7,    5,    9,   21,   13,   19,   25,   11,   15,    39, .
    2,    6,   10,   22,   18,   30,   26,   14,   46,   58,   66,    78, .
    4,   12,   20,   28,   36,   60,   52,   76,   68,   44,   84,   156, .
    8,   24,   40,   56,   72,  120,  208,  136,   88,  232,  168,   624, .
   16,   48,   80,  112,  144,  240,  104,  200,  496,  424,  336,   312, .
   64,  192,  160,  224,  576,  480,  520,  256,  344,  608,  672,  1560, .
   32,   96,  640,  448,  288, 1920, 1144,  512, 1984,  736, 1344,  3432, .
  184,  552,  320, 1720, 1656,  960, 2072, 1024, 1376, 4384, 5160,  6216, .
  352, 1056, 1600,  824, 3168, 4800, 3712, 6040, 5344, 2936, 2472, 11136, .
  ...
		

Crossrefs

Inverse: A265346.
Transpose: A265347.
Leftmost column: A264980.
Topmost row: A265341.
Row index: A265330 (zero-based), A265331 (one-based).
Column index: A265910 (zero-based), A265911 (one-based).
Cf. also A265342.
Related permutations: A263273, A265895.

Programs

Formula

For row=0, A(0,col) = A265341(col), for row>0, A(row,col) = A265342(A(row-1,col)).
A(row, col) = A263273((2^row) * A263273(A265341(col))). [The above reduces to this.]
Previous Showing 41-50 of 70 results. Next