cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A263633 Irregular triangle read by rows: row n gives coefficients of n-th ordinary Bell polynomial B_n(x_1, x_2, ...) with monomials sorted into graded lexicographic order.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 4, 3, 3, 2, 2, 1, 1, 5, 4, 6, 3, 6, 1, 2, 2, 1, 1, 1, 6, 5, 10, 4, 12, 4, 3, 6, 3, 3, 2, 2, 2, 1, 1, 7, 6, 15, 5, 20, 10, 4, 12, 6, 12, 1, 3, 6, 6, 3, 3, 2, 2, 2, 1, 1, 1, 8, 7, 21, 6, 30, 20, 5, 20, 10, 30, 5, 4, 12, 12, 12, 12, 4, 3, 6, 6, 3, 3, 6, 1, 2, 2, 2, 2, 1
Offset: 1

Views

Author

N. J. A. Sloane, Oct 28 2015

Keywords

Comments

"Ordinary" here means in contrast to "exponential", cf. A178867 (see Comtet).
Graded lexicographic order with x[1] > x[2] > ... > x[n] means that monomials are compared first by their total degree, with ties broken by lexicographic order. These monomials correspond to integer partitions.
Row sums are powers of 2. Numbers of terms in rows are partition numbers A000041.
OP_n(-a_1,..,-a_n) = EP_n(a_1,2!*a_2,..,n!*a_n) / n!, where OP_n(a_1,..,a_n) are the partition polynomials of this entry and EP_n, the polynomials of A133314; i.e., the sequences are related as reciprocal o.g.f.s are to reciprocal e.g.f.s. The polynomials play a role in expansion of the iterated Lie derivative (g(x) D_x)^n) formalism for the compositional inversion sketched in A133932. With x[n] = t, the array reduces to the Pascal matrix A007318. - Tom Copeland, Sep 19 2016
The signed row partition polynomials can be generated by the Gram determinants of equation 2.23 on page 133 of the Verde-Star paper. E.g., h_3 = -b_1^3 + 2 b_1 b_2 - b_3 corresponds to the third row. The connection to A133314 is obtained by substituting a(k) = k!*b_k = -k!*x[k] and b(k) = k!*h_k in A133314 to compute reciprocals of o.g.f.s rather than e.g.f.s. - Tom Copeland, Dec 04 2016
For a relation to lambda operations in K-theory on vector bundles, see p. 218 of Dugger. - Tom Copeland, Jul 25 2017
Since E(x) = (1+x_1*x)(1+x_2*x)...(1+x_m*x) is the o.g.f. for the elementary symmetric polynomials e_n(x_1,x_2,...,x_m) and the o.g.f. for the complete symmetric polynomials h_n(x_1,x_2,...,x_m) is H(x) = 1 / E(-x), this entry's partition polynomials with correct signs give either sequence in terms of the other. - Tom Copeland, Jan 29 2018
A133314 has an interpretation as weighted surjective mappings. With the connections of this mapping colored and permuted to give mappings distinguished by the order of the colorings (an induced linear ordering by color of the connecting arrows), the signed partition polynomials of this entry, multiplied by n!, are generated. - Tom Copeland, Sep 10 2020

Examples

			The first few polynomials are:
1, x[1]
2, x[1]^2 + x[2]
3, x[1]^3 + 2*x[1]*x[2] + x[3]
4, x[1]^4 + 3*x[1]^2*x[2] + 2*x[1]*x[3] + x[2]^2 + x[4]
5, x[1]^5 + 4*x[1]^3*x[2] + 3*x[1]^2*x[3] + 3*x[1]*x[2]^2 + 2*x[1]*x[4] + 2*x[2]*x[3] + x[5]
6, x[1]^6 + 5*x[1]^4*x[2] + 4*x[1]^3*x[3] + 6*x[1]^2*x[2]^2 + 3*x[1]^2*x[4] + 6*x[1]*x[2]*x[3] + x[2]^3 + 2*x[1]*x[5] + 2*x[2]*x[4] + x[3]^2 + x[6]
...
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, pp. 136, 309.

Crossrefs

For triangle of coefficients of exponential Bell polynomials see A178867.

Programs

  • Maple
    with(Groebner):
    A263633_row := proc(n) local EE,t1,t2,Q,F,X,p,L,q,c,r;
    EE := add(x[i]*t^i, i=1..2*n);
    t1 := 1/(1-EE):
    t2 := series(t1, t, 2*n):
    Q := k -> expand(coeff(t2, t, k));
    X := seq(x[i], i=1..n);
    p := Q(n);
    L := [];
    while p <> 0 do
       r := LeadingTerm(p, grlex(X));
       c := r[1]; q := r[2];
       p := p - c*q;
       L := [op(L), c];
    od;
    L end:
    for n from 1 to 8 do A263633_row(n) od; # Program expanded by Peter Luschny, Sep 26 2016

Formula

G.f.: 1/(1-Sum_{i >= 1} x_i*t^i) = 1 + Sum_{n >= 1} B_n(x_1, x_2,...)*t^n. [Comtet, p. 136, Eq. [3o'].]

Extensions

More terms and some edits by Peter Luschny, Sep 26 2016

A130850 Triangle read by rows, 0 <= k <= n, T(n,k) = Sum_{j=0..n} A(n,j)*binomial(n-j,k) where A(n,j) are the Eulerian numbers A173018.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 6, 12, 7, 1, 24, 60, 50, 15, 1, 120, 360, 390, 180, 31, 1, 720, 2520, 3360, 2100, 602, 63, 1, 5040, 20160, 31920, 25200, 10206, 1932, 127, 1, 40320, 181440, 332640, 317520, 166824, 46620, 6050, 255, 1, 362880, 1814400, 3780000, 4233600, 2739240, 1020600, 204630, 18660, 511, 1
Offset: 0

Views

Author

Philippe Deléham, Aug 20 2007

Keywords

Comments

Old name was: Triangle T(n,k), 0<=k<=n, read by rows given by [1,1,2,2,3,3,4,4,5,5,...] DELTA [1,0,2,0,3,0,4,0,5,0,6,0,...] where DELTA is the operator defined in A084938.
Vandervelde (2018) refers to this as the Worpitzky number triangle - N. J. A. Sloane, Mar 27 2018 [Named after the German mathematician Julius Daniel Theodor Worpitzky (1835-1895). - Amiram Eldar, Jun 24 2021]
Triangle given by A123125*A007318 (as infinite lower triangular matrices), A123125 = Euler's triangle, A007318 = Pascal's triangle; A007318*A123125 gives A046802.
Taylor coefficients of Eulerian polynomials centered at 1. - Louis Zulli, Nov 28 2015
A signed refinement is A263634. - Tom Copeland, Nov 14 2016
With all offsets 0, let A_n(x;y) = (y + E.(x))^n, an Appell sequence in y where E.(x)^k = E_k(x) are the Eulerian polynomials of A123125. Then the row polynomials of A046802 (the h-polynomials of the stellahedra) are given by h_n(x) = A_n(x;1); the row polynomials of A248727 (the face polynomials of the stellahedra), by f_n(x) = A_n(1 + x;1); the Swiss-knife polynomials of A119879, by Sw_n(x) = A_n(-1;1 + x); and the row polynomials of this entry (the Worpitsky triangle, A130850), by w_n(x) = A(1 + x;0). Other specializations of A_n(x;y) give A090582 (the f-polynomials of the permutohedra, cf. also A019538) and A028246 (another version of the Worpitsky triangle). - Tom Copeland, Jan 24 2020

Examples

			Triangle begins:
1
1      1
2      3       1
6      12      7       1
24     60      50      15      1
120    360     390     180     31      1
720    2520    3360    2100    602     63      1
5040   20160   31920   25200   10206   1932    127    1
40320  181440  332640  317520  166824  46620   6050   255   1
362880 1814400 3780000 4233600 2739240 1020600 204630 18660 511 1
...
		

Crossrefs

Programs

  • Mathematica
    Table[(n-k)!*StirlingS2[n+1, n-k+1], {n, 0, 10}, {k, 0, n}] (* G. C. Greubel, Nov 15 2015 *)
  • PARI
    t(n, k) = (n-k)!*stirling(n+1, n-k+1, 2);
    tabl(nn) = for (n=0, 10, for (k=0, n, print1(t(n,k),", ")); print()); \\ Michel Marcus, Nov 16 2015
  • Sage
    from sage.combinat.combinat import eulerian_number
    def A130850(n, k):
        return add(eulerian_number(n, j)*binomial(n-j, k) for j in (0..n))
    for n in (0..7): [A130850(n, k) for k in (0..n)] # Peter Luschny, May 21 2013
    

Formula

T(n,k) = (-1)^k*A075263(n,k).
T(n,k) = (n-k)!*A008278(n+1,k+1).
T(n,n-1) = 2^n - 1 for n > 0. - Derek Orr, Dec 31 2015
E.g.f.: x/(e^(-x*t)*(1+x)-1). - Tom Copeland, Nov 14 2016
Sum_{k=1..floor(n/2)} T(n,2k) = Sum_{k=0..floor(n/2)} T(n,2k+1) = A000670(n). - Jacob Sprittulla, Oct 03 2021

Extensions

New name from Peter Luschny, May 21 2013

A188881 Triangle of coefficients arising from an expansion of Integral( exp(exp(exp(x))), dx).

Original entry on oeis.org

1, 1, 1, 2, 3, 2, 6, 11, 12, 6, 24, 50, 70, 60, 24, 120, 274, 450, 510, 360, 120, 720, 1764, 3248, 4410, 4200, 2520, 720, 5040, 13068, 26264, 40614, 47040, 38640, 20160, 5040, 40320, 109584, 236248, 403704, 538776, 544320, 393120, 181440, 40320
Offset: 1

Views

Author

N. J. A. Sloane, Apr 14 2011

Keywords

Comments

Also the coefficients of the polynomials which are generated by the exponential generating function -log(1 + x*log(1 - t)). The polynomials might be called 'logarithmic polynomials'. Note also A003713, and A263634 for a different use of this term. See the paper of F. Qi for a related, but different family of polynomials. - Peter Luschny, Jul 11 2020
Edgar remarks that these coefficients are related to Stirling numbers of the second kind (cf. A008277).
The first column and the main diagonal are the factorials (A000142). The n-th entry on the first subdiagonal is A001710(n+1). The second column is A000254, the third column is 2*A000399, and the fourth column is 6*A000454. In general, the k-th column is (k-1)!*s(n,k), where s(n,k) is the unsigned Stirling number of the first kind. - Nathaniel Johnston, Apr 15 2011
With offset n=0, k=0 : triangle T(n,k), read by rows,given by T(n,k) = k*T(n-1, k-1) + n*T(n-1, k) with T(0, 0) = 1. - Philippe Deléham, Oct 04 2011

Examples

			Triangle begins:
1
1    1
2    3    2
6    11   12   6
24   50   70   60   24
120  274  450  510  360  120
...
		

Crossrefs

Programs

  • Maple
    S:=proc(n,k)global s:if(n=0 and k=0)then s[0,0]:=1:elif(n=0 or k=0)then s[n,k]:=0:elif(not type(s[n,k],integer))then s[n,k]:=(n-1)*S(n-1,k)+S(n-1,k-1):fi:return s[n,k]:end:
    T:=proc(n,k)return (k-1)!*S(n,k);end:
    for n from 1 to 6 do for k from 1 to n do print(T(n,k)):od:od: # Nathaniel Johnston, Apr 15 2011
    # With offset n = 0, k = 0:
    A188881 := (n, k) -> k!*abs(Stirling1(n+1, k+1)):
    seq(seq(A188881(n,k), k=0..n), n=0..8); # Peter Luschny, Oct 19 2017
    # Alternative:
    gf := -log(1 + x*log(1 - t)): ser := series(gf, t, 18):
    toeff := n -> n!*expand(coeff(ser, t, n)):
    seq(print(seq(coeff(toeff(n), x, k), k=1..n)), n=1..8); # Peter Luschny, Jul 10 2020
  • Mathematica
    Table[(k - 1)! * Sum[StirlingS2[i, k] * (-1)^(n - i) * StirlingS1[n, i], {i, 0, k}], {n, 9}, {k, n}] // Flatten (* Michael De Vlieger, Apr 17 2015 *)
  • Maxima
    T(n,k):=(k-1)!*sum(stirling2(i,k)*(-1)^(n-i)*stirling1(n,i),i,0,k); /* Vladimir Kruchinin, Apr 17 2015 */
    
  • PARI
    {T(n, k) = if( k<1 || k>n, 0, (n-1)! * polcoeff( (x / (1 - exp(-x * (1 + x * O(x^n)))))^n, n-k))}; /* Michael Somos, May 10 2017 */
    
  • PARI
    {T(n, k) = if( k<1 || n<0, 0, (k-1)! * sum(i=0, k, stirling(i, k, 2) * (-1)^(n-i) * stirling(n, i, 1)))}; /* Michael Somos, May 10 2017 */

Formula

T(n, k) = (k-1)!*Sum_{i=0..k}(Stirling2(i,k)*(-1)^(n-i)*Stirling1(n,i)) =
T(n, k) = Sum_{i=0..k}(W(i,k)*(-1)^(n-i)*Stirling1(n,i)), where W(n,k) is the Worpitzky triangle A028246. - Vladimir Kruchinin, Apr 17 2015.
T(n,k) = [x^k] n!*[t^n](-log(1 + x*log(1 - t))). - Peter Luschny, Jul 10 2020
T(n,k) = Sum_{m=0..n-k} abs(Stirling1(n-1,m+k-1))*(k+m-1)!/m!. - Vladimir Kruchinin, Jul 14 2025

Extensions

a(11)-a(45) from Nathaniel Johnston, Apr 15 2011
Previous Showing 11-13 of 13 results.