cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 25 results. Next

A363620 Reverse-weighted alternating sum of the multiset of prime indices of n.

Original entry on oeis.org

0, 1, 2, 1, 3, 0, 4, 2, 2, -1, 5, 3, 6, -2, 1, 2, 7, 1, 8, 4, 0, -3, 9, 1, 3, -4, 4, 5, 10, 2, 11, 3, -1, -5, 2, 3, 12, -6, -2, 0, 13, 3, 14, 6, 5, -7, 15, 4, 4, 0, -3, 7, 16, 0, 1, -1, -4, -8, 17, 2, 18, -9, 6, 3, 0, 4, 19, 8, -5, 1, 20, 2, 21, -10, 3, 9, 3
Offset: 1

Views

Author

Gus Wiseman, Jun 13 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define the reverse-weighted alternating sum of a sequence (y_1,...,y_k) to be Sum_{i=1..k} (-1)^(k-i) i * y_{k-i+1}.

Examples

			The prime indices of 300 are {1,1,2,3,3}, with reverse-weighted alternating sum 1*3 - 2*3 + 3*2 - 4*1 + 5*1 = 4, so a(300) = 4.
		

Crossrefs

The reverse non-alternating version is A304818, row-sums of A359361.
The non-alternating version is A318283, row-sums of A358136.
The unweighted version is A344616, reverse A316524.
The reverse version is A363619.
Positions of zeros are A363621.
The triangle for this rank statistic is A363623, reverse A363622.
For partitions instead of multisets we have A363625, reverse A363624.
A055396 gives minimum prime index, maximum A061395.
A112798 lists prime indices, length A001222, sum A056239.
A264034 counts partitions by weighted sum, reverse A358194.
A320387 counts multisets by weighted sum, zero-based A359678.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    revaltwtsum[y_]:=Sum[(-1)^(Length[y]-k)*k*y[[-k]],{k,1,Length[y]}];
    Table[revaltwtsum[prix[n]],{n,100}]

A363621 Positive integers whose prime indices have reverse-weighted alternating sum 0.

Original entry on oeis.org

1, 6, 21, 40, 50, 54, 65, 132, 133, 154, 210, 224, 319, 340, 351, 360, 374, 392, 450, 481, 486, 507, 546, 598, 624, 644, 731, 825, 855, 969, 1007, 1029, 1054, 1144, 1210, 1254, 1320, 1364, 1386, 1403, 1408, 1520, 1558, 1653, 1750, 1785, 1827, 1836, 1890, 1960
Offset: 1

Views

Author

Gus Wiseman, Jun 13 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define the reverse-weighted alternating sum of a sequence (y_1,...,y_k) to be Sum_{i=1..k} (-1)^(k-i) i * y_{k-i+1}.

Examples

			The prime indices of 360 are {1,1,1,2,2,3}, with reverse-weighted alternating sum 1*3 - 2*2 + 3*2 - 4*1 + 5*1 - 6*1 = 0, so 360 is in the sequence.
The terms together with their prime indices begin:
     1: {}
     6: {1,2}
    21: {2,4}
    40: {1,1,1,3}
    50: {1,3,3}
    54: {1,2,2,2}
    65: {3,6}
   132: {1,1,2,5}
   133: {4,8}
   154: {1,4,5}
   210: {1,2,3,4}
   224: {1,1,1,1,1,4}
   319: {5,10}
   340: {1,1,3,7}
   351: {2,2,2,6}
   360: {1,1,1,2,2,3}
		

Crossrefs

The unweighted version is A000290.
Partitions of this type are counted by A363532.
Positions of zeros in A363620 and A363624, reverse A363619 and A363625.
Compositions of this type are counted by A363626.
A053632 counts compositions by weighted sum.
A055396 gives minimum prime index, maximum A061395.
A112798 lists prime indices, length A001222, sum A056239.
A264034 counts partitions by weighted sum, reverse A358194.
A304818 gives weighted sum of prime indices.
A318283 gives weighted sum of reversed prime indices.
A320387 counts multisets by weighted sum.
A344616 gives reverse-alternating sum of prime indices.
A363623 counts partitions by reverse-weighted alternating sum.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    revaltwtsum[y_]:=Sum[(-1)^(Length[y]-k)*k*y[[-k]],{k,1,Length[y]}];
    Select[Range[1000],revaltwtsum[prix[#]]==0&]

A363622 Irregular triangle read by rows where T(n,k) is the number of integer partitions of n with weighted alternating sum k (leading and trailing 0's omitted).

Original entry on oeis.org

1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 2, 0, 0, 1, 0, 1, 1, 2, 0, 1, 1, 1, 1, 1, 3, 0, 0, 2, 0, 1, 1, 2, 1, 1, 3, 0, 2, 2, 1, 1, 2, 2, 1, 1, 5, 0, 0, 3, 0, 2, 2, 2, 1, 3, 2, 1, 1, 5, 0, 3, 3, 2, 2, 3, 2, 2, 4, 2, 1, 1, 7, 0, 0, 5, 0, 3, 3, 4, 2, 4, 2, 4, 4, 2, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Jun 15 2023

Keywords

Comments

We define the weighted alternating sum of a sequence (y_1,...,y_k) to be Sum_{i=1..k} (-1)^(i-1) i * y_i. For example:
- (3,3,2,1,1) has weighted alternating sum 1*3 - 2*3 + 3*2 - 4*1 + 5*1 = 4.
- (1,2,2,3) has weighted alternating sum 1*1 - 2*2 + 3*2 - 4*3 = -9.

Examples

			Triangle begins:
  1
  1
  1  0  0  1
  1  0  1  1
  2  0  0  1  0  1  1
  2  0  1  1  1  1  1
  3  0  0  2  0  1  1  2  1  1
  3  0  2  2  1  1  2  2  1  1
  5  0  0  3  0  2  2  2  1  3  2  1  1
  5  0  3  3  2  2  3  2  2  4  2  1  1
  7  0  0  5  0  3  3  4  2  4  2  4  4  2  1  1
  7  0  5  5  3  3  5  4  3  5  3  5  4  2  1  1
Row n = 6 counts the following partitions:
  k=-3            k=0        k=2    k=3   k=4      k=5    k=6
  -----------------------------------------------------------
  (33)      .  .  (42)    .  (321)  (51)  (222)    (411)  (6)
  (2211)          (3111)                  (21111)
  (111111)
		

Crossrefs

Row sums are A000041.
The unweighted version is A103919 with leading zeros removed.
Row-lengths appear to be A168233.
Central column T(n,0) is A363532, ranks A363621.
The corresponding rank statistic is A363619, reverse A363620.
The reverse version is A363623.
A053632 counts compositions by weighted sum.
A264034 counts partitions by weighted sum, reverse A358194.
A316524 gives alternating sum of prime indices, reverse A344616.
A363624 gives weighted alternating sum of Heinz partition, reverse A363625.

Programs

  • Mathematica
    altwtsum[y_]:=Sum[(-1)^(k-1)*k*y[[k]],{k,1,Length[y]}];
    Table[Length[Select[IntegerPartitions[n],altwtsum[#]==k&]],{n,0,15},{k,Min[altwtsum/@IntegerPartitions[n]], Max[altwtsum/@IntegerPartitions[n]]}]

A363623 Irregular triangle read by rows where T(n,k) is the number of integer partitions of n with reverse-weighted alternating sum k (leading and trailing 0's omitted).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 0, 1, 2, 2, 1, 1, 1, 1, 1, 3, 1, 0, 3, 0, 1, 1, 1, 1, 3, 2, 0, 3, 1, 2, 0, 1, 0, 1, 2, 5, 1, 0, 3, 1, 2, 2, 2, 1, 1, 0, 1, 0, 1, 2, 5, 3, 0, 4, 2, 2, 0, 3, 2, 1, 3, 0, 0, 1, 0, 1, 1, 1, 1, 7, 2, 0, 4, 1, 5, 2, 3, 1, 3, 0, 2, 3, 1, 2, 1, 0, 0, 1, 0, 1, 1, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Jun 15 2023

Keywords

Comments

We define the reverse-weighted alternating sum of a sequence (y_1,...,y_k) to be Sum_{i=1..k} (-1)^(k-i) i * y_{k-i+1}. For example:
- (3,3,2,1,1) has reverse-weighted alternating sum 1*1 - 2*1 + 3*2 - 4*3 + 5*3 = 8.
- (1,2,2,3) has reverse-weighted alternating sum -1*3 + 2*2 - 3*2 + 4*1 = -1.

Examples

			Triangle begins:
  1
  1
  1  1
  1  2
  2  0  1  2
  2  1  1  1  1  1
  3  1  0  3  0  1  1  1  1
  3  2  0  3  1  2  0  1  0  1  2
  5  1  0  3  1  2  2  2  1  1  0  1  0  1  2
  5  3  0  4  2  2  0  3  2  1  3  0  0  1  0  1  1  1  1
Row n = 6 counts the following partitions:
  k=3       k=4       k=6       k=8      k=9   k=10    k=11
--------------------------------------------------------------
  (33)      (222)  .  (6)    .  (21111)  (51)  (3111)  (411)
  (2211)              (42)
  (111111)            (321)
		

Crossrefs

Row sums are A000041.
Column k = floor((n+1)/2) is A119620.
The unweighted version is A344612 aerated, reverse A103919.
The corresponding rank statistic is A363620, reverse A363619.
The reverse version is A363622.
A053632 counts compositions by weighted sum.
A264034 counts partitions by weighted sum, reverse A358194.
A316524 gives alternating sum of prime indices, reverse A344616.
A363624 gives weighted alternating sum of Heinz partition, reverse A363625.

Programs

  • Mathematica
    revaltwtsum[y_]:=Sum[(-1)^(Length[y]-k)*k*y[[-k]],{k,1,Length[y]}];
    Table[Length[Select[IntegerPartitions[n],revaltwtsum[#]==k&]],{n,0,15},{k,Floor[(n+1)/2],Ceiling[n*(n+1)/4]}]

A363624 Weighted alternating sum of the integer partition with Heinz number n.

Original entry on oeis.org

0, 1, 2, -1, 3, 0, 4, 2, -2, 1, 5, 3, 6, 2, -1, -2, 7, 1, 8, 4, 0, 3, 9, -1, -3, 4, 4, 5, 10, 2, 11, 3, 1, 5, -2, -3, 12, 6, 2, 0, 13, 3, 14, 6, 5, 7, 15, 4, -4, 0, 3, 7, 16, 0, -1, 1, 4, 8, 17, -2, 18, 9, 6, -3, 0, 4, 19, 8, 5, 1, 20, 2, 21, 10, 3, 9, -3, 5
Offset: 1

Views

Author

Gus Wiseman, Jun 13 2023

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
We define the weighted alternating sum of a sequence (y_1,...,y_k) to be Sum_{i=1..k} (-1)^(i - 1) * i * y_i.

Examples

			The partition with Heinz number 600 is (3,3,2,1,1,1), with weighted alternating sum 1*3 - 2*3 + 3*2 - 4*1 + 5*1 - 6*1 = -2, so a(600) = -2.
		

Crossrefs

The non-alternating version is A318283, reverse A304818.
The unweighted version is A344616, reverse A316524.
For multisets instead of partitions we have A363619.
Positions of zeros are A363621, counted by A363532.
The triangle for this rank statistic is A363622, reverse A363623.
The reverse version is A363625, for multisets A363620.
A055396 gives minimum prime index, maximum A061395.
A112798 lists prime indices, length A001222, sum A056239.
A264034 counts partitions by weighted sum, reverse A358194.
A320387 counts multisets by weighted sum, reverse A007294.
A359677 gives zero-based weighted sum of prime indices, reverse A359674.
A363626 counts compositions with reverse-weighted alternating sum 0.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    altwtsum[y_]:=Sum[(-1)^(k-1)*k*y[[k]],{k,1,Length[y]}];
    Table[altwtsum[Reverse[prix[n]]],{n,100}]

A363625 Reverse-weighted alternating sum of the integer partition with Heinz number n.

Original entry on oeis.org

0, 1, 2, 1, 3, 3, 4, 2, 2, 5, 5, 5, 6, 7, 4, 2, 7, 3, 8, 8, 6, 9, 9, 6, 3, 11, 4, 11, 10, 6, 11, 3, 8, 13, 5, 3, 12, 15, 10, 10, 13, 9, 14, 14, 7, 17, 15, 8, 4, 4, 12, 17, 16, 5, 7, 14, 14, 19, 17, 7, 18, 21, 10, 3, 9, 12, 19, 20, 16, 7, 20, 4, 21, 23, 5, 23
Offset: 1

Views

Author

Gus Wiseman, Jun 15 2023

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
We define the reverse-weighted alternating sum of a sequence (y_1,...,y_k) to be Sum_{i=1..k} (-1)^(k-i) * i * y_{k-i+1}.

Examples

			The partition with Heinz number 600 is (3,3,2,1,1,1), so a(600) = -1*1 + 2*1 - 3*1 + 4*2 - 5*3 + 6*3 = 9.
		

Crossrefs

The non-alternating version is A304818, reverse A318283.
The unweighted version is A316524, reverse A344616.
For multisets instead of partitions we have A363620.
The triangle for this rank statistic is A363623, reverse A363622.
The reverse version is A363624, for multisets A363619.
A055396 gives minimum prime index, maximum A061395.
A112798 lists prime indices, length A001222, sum A056239.
A264034 counts partitions by weighted sum, reverse A358194.
A320387 counts multisets by weighted sum, reverse A007294.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    revaltwtsum[y_]:=Sum[(-1)^(Length[y]-k)*k*y[[-k]],{k,1,Length[y]}];
    Table[revaltwtsum[Reverse[prix[n]]],{n,100}]

A362560 Number of integer partitions of n whose weighted sum is not divisible by n.

Original entry on oeis.org

0, 1, 1, 4, 5, 8, 12, 19, 25, 38, 51, 70, 93, 124, 162, 217, 279, 360, 462, 601, 750, 955, 1203, 1502, 1881, 2336, 2892, 3596, 4407, 5416, 6623, 8083, 9830, 11943, 14471, 17488, 21059, 25317, 30376, 36424, 43489, 51906, 61789, 73498, 87186, 103253, 122098
Offset: 1

Views

Author

Gus Wiseman, Apr 28 2023

Keywords

Comments

The (one-based) weighted sum of a sequence (y_1,...,y_k) is Sum_{i=1..k} i*y_i. This is also the sum of partial sums of the reverse.
Conjecture: A partition of n has weighted sum divisible by n iff its reverse has weighted sum divisible by n.

Examples

			The weighted sum of y = (3,3,1) is 1*3+2*3+3*1 = 12, which is not a multiple of 7, so y is counted under a(7).
The a(2) = 1 through a(7) = 12 partitions:
  (11)  (21)  (22)    (32)    (33)      (43)
              (31)    (41)    (42)      (52)
              (211)   (221)   (51)      (61)
              (1111)  (311)   (321)     (322)
                      (2111)  (411)     (331)
                              (2211)    (421)
                              (21111)   (511)
                              (111111)  (2221)
                                        (4111)
                                        (22111)
                                        (31111)
                                        (211111)
		

Crossrefs

For median instead of mean we have A322439 aerated, complement A362558.
The complement is counted by A362559.
A000041 counts integer partitions, strict A000009.
A008284/A058398/A327482 count partitions by mean.
A264034 counts partitions by weighted sum.
A304818 = weighted sum of prime indices, row-sums of A359361.
A318283 = weighted sum of reversed prime indices, row-sums of A358136.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],!Divisible[Total[Accumulate[Reverse[#]]],n]&]],{n,30}]

A363531 Heinz numbers of integer partitions such that 3*(sum) = (reverse-weighted sum).

Original entry on oeis.org

1, 32, 144, 216, 243, 672, 1008, 1350, 2176, 2250, 2520, 2673, 3125, 3969, 4160, 4200, 5940, 6240, 6615, 7344, 7424, 7744, 8262, 9261, 9800, 9900, 10400, 11616, 12250, 12312, 12375, 13104, 13720, 14720, 14742, 16767, 16807, 17150, 19360, 21840, 22080, 23100
Offset: 1

Views

Author

Gus Wiseman, Jun 12 2023

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
The (one-based) weighted sum of a sequence (y_1,...,y_k) is Sum_{i=1..k} i*y_i. The reverse-weighted sum is the weighted sum of the reverse, also the sum of partial sums. For example, the weighted sum of (4,2,2,1) is 1*4 + 2*2 + 3*2 + 4*1 = 18 and the reverse-weighted sum is 4*4 + 3*2 + 2*2 + 1*1 = 27.

Examples

			The terms together with their prime indices begin:
      1: {}
     32: {1,1,1,1,1}
    144: {1,1,1,1,2,2}
    216: {1,1,1,2,2,2}
    243: {2,2,2,2,2}
    672: {1,1,1,1,1,2,4}
   1008: {1,1,1,1,2,2,4}
   1350: {1,2,2,2,3,3}
   2176: {1,1,1,1,1,1,1,7}
   2250: {1,2,2,3,3,3}
   2520: {1,1,1,2,2,3,4}
   2673: {2,2,2,2,2,5}
   3125: {3,3,3,3,3}
   3969: {2,2,2,2,4,4}
   4160: {1,1,1,1,1,1,3,6}
		

Crossrefs

These partitions are counted by A363526.
The non-reverse version is A363530, counted by A363527.
A053632 counts compositions by weighted sum.
A055396 gives minimum prime index, maximum A061395.
A112798 lists prime indices, length A001222, sum A056239.
A264034 counts partitions by weighted sum, reverse A358194.
A304818 gives weighted sum of prime indices, row-sums of A359361.
A318283 gives weighted sum of reversed prime indices, row-sums of A358136.
A320387 counts multisets by weighted sum, zero-based A359678.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1000],3*Total[prix[#]]==Total[Accumulate[prix[#]]]&]

Formula

A056239(a(n)) = A318283(a(n))/3.

A363526 Number of integer partitions of n with reverse-weighted sum 3*n.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 4, 3, 2, 4, 4, 4, 5, 5, 4, 7, 7, 5, 8, 7, 6, 11, 9, 8, 11, 10, 10, 13, 12, 11, 15, 15, 12, 17, 16, 14, 20, 18, 16, 22, 20, 19, 24, 22, 20, 27, 26, 23, 29, 27, 25, 33, 30, 28, 35, 33, 31, 38, 36, 33, 41, 40
Offset: 0

Views

Author

Gus Wiseman, Jun 10 2023

Keywords

Comments

Are the partitions counted all of length 4 or 5?
The (one-based) weighted sum of a sequence (y_1,...,y_k) is Sum_{i=1..k} i*y_i. The reverse-weighted sum is the weighted sum of the reverse, also the sum of partial sums. For example, the weighted sum of (4,2,2,1) is 1*4 + 2*2 + 3*2 + 4*1 = 18 and the reverse-weighted sum is 4*4 + 3*2 + 2*2 + 1*1 = 27.

Examples

			The partition (6,4,4,1) has sum 15 and reverse-weighted sum 45 so is counted under a(15).
The a(n) partitions for n = {5, 10, 15, 16, 21, 24}:
  (1,1,1,1,1)  (4,3,2,1)    (6,4,4,1)    (6,5,4,1)  (8,6,6,1)   (9,7,7,1)
               (2,2,2,2,2)  (6,5,2,2)    (6,6,2,2)  (8,7,4,2)   (9,8,5,2)
                            (7,3,3,2)    (7,4,3,2)  (9,5,5,2)   (9,9,3,3)
                            (3,3,3,3,3)             (9,6,3,3)   (10,6,6,2)
                                                    (10,4,4,3)  (10,7,4,3)
                                                                (11,5,5,3)
                                                                (12,4,4,4)
		

Crossrefs

Positions of terms with omega > 4 appear to be A079998.
The version for compositions is A231429.
The non-reverse version is A363527.
These partitions have ranks A363530, reverse A363531.
A000041 counts integer partitions, strict A000009.
A053632 counts compositions by weighted sum, rank statistic A029931/A359042.
A264034 counts partitions by weighted sum, reverse A358194.
A304818 gives weighted sum of prime indices, row-sums of A359361.
A318283 gives weighted sum of reversed prime indices, row-sums of A358136.
A320387 counts multisets by weighted sum, zero-based A359678.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Total[Accumulate[#]]==3n&]],{n,0,30}]

A066185 Sum of the first moments of all partitions of n with weights starting at 0.

Original entry on oeis.org

0, 0, 1, 4, 12, 26, 57, 103, 191, 320, 537, 843, 1342, 2015, 3048, 4457, 6509, 9250, 13170, 18316, 25483, 34853, 47556, 64017, 86063, 114285, 151462, 198871, 260426, 338275, 438437, 564131, 724202, 924108, 1176201, 1489237, 1881273, 2365079, 2966620, 3705799
Offset: 0

Views

Author

Wouter Meeussen, Dec 15 2001

Keywords

Comments

The first element of each partition is given weight 0.
Consider the partitions of n, e.g., n=5. For each partition sum T(e-1) and sum all these. E.g., 5 -> T(4)=10, 41 -> T(3)+T(0)=6, 32 -> T(2)+T(1)=4, 311 -> T(2)+T(0)+T(0)=3, 221 -> T(1)+T(1)+T(0)=2, 21111 ->1 and 11111 ->0. Summing, 10+6+4+3+2+1+0 = 26 as desired. - Jon Perry, Dec 12 2003
Also equals the sum of f(p) over the partitions p of n, where f(p) is obtained by replacing each part p_i of partition p by p_i*(p_i-1)/2. See I. G. Macdonald: Symmetric functions and Hall polynomials 2nd edition, p. 3, eqn (1.5) and (1.6). - Wouter Meeussen, Sep 25 2014

Examples

			a(3)=4 because the first moments of all partitions of 3 are {3}.{0},{2,1}.{0,1} and {1,1,1}.{0,1,2}, resulting in 0,1,3; summing to 4.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i=1, [1, 0],
          b(n, i-1)+(h-> h+[0, h[1]*i*(i-1)/2])(b(n-i, min(n-i, i))))
        end:
    a:= n-> b(n$2)[2]:
    seq(a(n), n=0..50);  # Alois P. Heinz, Jan 29 2014
  • Mathematica
    Table[ Plus@@ Map[ #.Range[ 0, -1+Length[ # ] ]&, IntegerPartitions[ n ] ], {n, 40} ]
    b[n_, i_] := b[n, i] = If[n==0, {1, 0}, If[i<1, {0, 0}, If[i>n, b[n, i-1], b[n, i-1] + Function[h, h+{0, h[[1]]*i*(i-1)/2}][b[n-i, i]]]]]; a[n_] := b[n, n][[2]]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Oct 26 2015, after Alois P. Heinz *)

Formula

a(n) = 1/2*(A066183(n) - A066186(n)). - Vladeta Jovovic, Mar 23 2003
G.f.: Sum_{k>=1} x^(2*k)/(1 - x^k)^3 / Product_{j>=1} (1 - x^j). - Ilya Gutkovskiy, Mar 05 2021
a(n) = Sum_{k=0..A161680(n)} k * A264034(n,k). - Alois P. Heinz, Jan 20 2023
a(n) ~ 3 * zeta(3) * sqrt(n) * exp(Pi*sqrt(2*n/3)) / (sqrt(2) * Pi^3). - Vaclav Kotesovec, Jul 06 2025
Previous Showing 11-20 of 25 results. Next