A381870
Numbers whose prime indices have a unique multiset partition into sets with distinct sums.
Original entry on oeis.org
1, 2, 3, 5, 7, 11, 12, 13, 17, 18, 19, 20, 23, 28, 29, 31, 36, 37, 41, 43, 44, 45, 47, 50, 52, 53, 59, 61, 63, 67, 68, 71, 73, 75, 76, 79, 83, 89, 92, 97, 98, 99, 100, 101, 103, 107, 109, 113, 116, 117, 120, 124, 127, 131, 137, 139, 147, 148, 149, 151, 153
Offset: 1
For n = 600 the unique multiset partition is {{1},{1,3},{1,2,3}}. The unique factorization is 2*10*30.
Normal multiset partitions of this type are counted by
A381718, see
A279785.
For constant instead of strict blocks we have
A381991, ones in
A381635.
A003963 gives product of prime indices.
A122111 represents conjugation in terms of Heinz numbers.
A265947 counts refinement-ordered pairs of integer partitions.
A321469 counts factorizations with distinct sums of prime indices, ones
A166684.
-
hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
sfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#,d]&)/@Select[sfacs[n/d],Min@@#>=d&],{d,Select[Rest[Divisors[n]],SquareFreeQ]}]];
Select[Range[100],Length[Select[sfacs[#],UnsameQ@@hwt/@#&]]==1&]
A382077
Number of integer partitions of n that can be partitioned into a set of sets.
Original entry on oeis.org
1, 1, 1, 2, 3, 5, 6, 9, 13, 17, 25, 33, 44, 59, 77, 100, 134, 171, 217, 283, 361, 449, 574, 721, 900, 1126, 1397, 1731, 2143, 2632, 3223, 3961, 4825, 5874, 7131, 8646, 10452, 12604, 15155, 18216, 21826, 26108, 31169, 37156, 44202, 52492, 62233, 73676, 87089, 102756, 121074
Offset: 0
For y = (3,2,2,2,1,1,1), we have the multiset partition {{1},{2},{1,2},{1,2,3}}, so y is counted under a(12).
The a(1) = 1 through a(8) = 13 partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(2,1) (3,1) (3,2) (4,2) (4,3) (5,3)
(2,1,1) (4,1) (5,1) (5,2) (6,2)
(2,2,1) (3,2,1) (6,1) (7,1)
(3,1,1) (4,1,1) (3,2,2) (3,3,2)
(2,2,1,1) (3,3,1) (4,2,2)
(4,2,1) (4,3,1)
(5,1,1) (5,2,1)
(3,2,1,1) (6,1,1)
(3,2,2,1)
(3,3,1,1)
(4,2,1,1)
(3,2,1,1,1)
Factorizations of this type are counted by
A050345.
Normal multiset partitions of this type are counted by
A116539.
The MM-numbers of these multiset partitions are
A302494.
Twice-partitions of this type are counted by
A358914.
For distinct block-sums instead of blocks we have
A381992, ranked by
A382075.
For normal multisets instead of integer partitions we have
A382214, complement
A292432.
A050320 counts multiset partitions of prime indices into sets.
A050326 counts multiset partitions of prime indices into distinct sets.
A265947 counts refinement-ordered pairs of integer partitions.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]& /@ sps[Range[Length[set]]]];
Table[Length[Select[IntegerPartitions[n], Length[Select[mps[#],UnsameQ@@#&&And@@UnsameQ@@@#&]]>0&]],{n,0,9}]
A381634
Number of multisets that can be obtained by taking the sum of each block of a set multipartition (multiset of sets) of the prime indices of n with distinct block-sums.
Original entry on oeis.org
1, 1, 1, 0, 1, 2, 1, 0, 0, 2, 1, 1, 1, 2, 2, 0, 1, 1, 1, 1, 2, 2, 1, 0, 0, 2, 0, 1, 1, 4, 1, 0, 2, 2, 2, 1, 1, 2, 2, 0, 1, 5, 1, 1, 1, 2, 1, 0, 0, 1, 2, 1, 1, 0, 2, 0, 2, 2, 1, 3, 1, 2, 1, 0, 2, 5, 1, 1, 2, 4, 1, 0, 1, 2, 1, 1, 2, 5, 1, 0, 0, 2, 1, 4, 2, 2, 2
Offset: 1
The prime indices of 120 are {1,1,2,3}, with 3 ways:
{{1},{1,2,3}}
{{1,2},{1,3}}
{{1},{2},{1,3}}
with block-sums: {1,6}, {3,4}, {1,2,4}, so a(120) = 3.
The prime indices of 210 are {1,2,3,4}, with 12 ways:
{{1,2,3,4}}
{{1},{2,3,4}}
{{2},{1,3,4}}
{{3},{1,2,4}}
{{4},{1,2,3}}
{{1,2},{3,4}}
{{1,3},{2,4}}
{{1},{2},{3,4}}
{{1},{3},{2,4}}
{{1},{4},{2,3}}
{{2},{3},{1,4}}
{{1},{2},{3},{4}}
with block-sums: {10}, {1,9}, {2,8}, {3,7}, {4,6}, {3,7}, {4,6}, {1,2,7}, {1,3,6}, {1,4,5}, {2,3,5}, {1,2,3,4}, of which 10 are distinct, so a(210) = 10.
A003963 gives product of prime indices.
A265947 counts refinement-ordered pairs of integer partitions.
Cf.
A000720,
A001222,
A002846,
A005117,
A116540,
A213242,
A213385,
A213427,
A299202,
A300385,
A317142,
A317143,
A318360.
-
hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
sfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#,d]&)/@Select[sfacs[n/d],Min@@#>=d&],{d,Select[Rest[Divisors[n]],SquareFreeQ]}]];
Table[Length[Union[Sort[hwt/@#]&/@Select[sfacs[n],UnsameQ@@hwt/@#&]]],{n,100}]
A382078
Number of integer partitions of n that cannot be partitioned into a set of sets.
Original entry on oeis.org
0, 0, 1, 1, 2, 2, 5, 6, 9, 13, 17, 23, 33, 42, 58, 76, 97, 126, 168, 207, 266, 343, 428, 534, 675, 832, 1039, 1279, 1575, 1933, 2381, 2881, 3524, 4269, 5179, 6237, 7525, 9033, 10860, 12969, 15512, 18475, 22005, 26105, 30973, 36642, 43325, 51078, 60184, 70769, 83152
Offset: 0
The partition y = (2,2,1,1,1) can be partitioned into sets in the following ways:
{{1},{1,2},{1,2}}
{{1},{1},{2},{1,2}}
{{1},{1},{1},{2},{2}}
But none of these is itself a set, so y is counted under a(7).
The a(2) = 1 through a(8) = 9 partitions:
(11) (111) (22) (2111) (33) (2221) (44)
(1111) (11111) (222) (4111) (2222)
(3111) (22111) (5111)
(21111) (31111) (22211)
(111111) (211111) (41111)
(1111111) (221111)
(311111)
(2111111)
(11111111)
The MM-numbers of these multiset partitions (set of sets) are
A302494.
Twice-partitions of this type are counted by
A358914.
A050320 counts multiset partitions of prime indices into sets.
A050326 counts multiset partitions into distinct sets, complement
A050345.
A265947 counts refinement-ordered pairs of integer partitions.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
Table[Length[Select[IntegerPartitions[n],Length[Select[mps[#],UnsameQ@@#&&And@@UnsameQ@@@#&]]==0&]],{n,0,9}]
A381452
Number of multisets that can be obtained by partitioning the prime indices of n into a set of multisets and taking their sums.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 3, 2, 2, 1, 4, 1, 2, 2, 3, 1, 5, 1, 3, 2, 2, 2, 4, 1, 2, 2, 5, 1, 5, 1, 3, 3, 2, 1, 5, 1, 3, 2, 3, 1, 5, 2, 5, 2, 2, 1, 7, 1, 2, 3, 4, 2, 5, 1, 3, 2, 5, 1, 6, 1, 2, 3, 3, 2, 5, 1, 6, 2, 2, 1, 8, 2, 2, 2
Offset: 1
The prime indices of 24 are {1,1,1,2}, with 5 partitions into a set of multisets:
{{1,1,1,2}}
{{1},{1,1,2}}
{{2},{1,1,1}}
{{1,1},{1,2}}
{{1},{2},{1,1}}
with block-sums: {5}, {1,4}, {2,3}, {2,3}, {1,2,2}, of which 4 are distinct, so a(24) = 4.
For distinct block-sums instead of blocks we have
A381637, before sums
A321469.
Other multiset partitions of prime indices:
A003963 gives product of prime indices.
A122111 represents conjugation in terms of Heinz numbers.
A265947 counts refinement-ordered pairs of integer partitions.
Cf.
A000720,
A001222,
A001970,
A002846,
A066328,
A213385,
A213427,
A299200,
A299202,
A300385,
A317142.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[mset_]:=Union[Sort[Sort/@(#/.x_Integer:>mset[[x]])]&/@sps[Range[Length[mset]]]];
Table[Length[Union[Sort[Total/@#]&/@Select[mps[prix[n]],UnsameQ@@#&]]],{n,100}]
A381993
Number of integer partitions of n that cannot be partitioned into constant multisets with a common sum.
Original entry on oeis.org
0, 0, 0, 1, 1, 5, 4, 13, 13, 25, 33, 54, 54, 99, 124, 166, 207, 295, 352, 488, 591, 780, 987, 1253, 1488, 1951, 2419, 2993, 3665, 4563, 5508, 6840, 8270, 10127, 12289, 14869, 17781, 21635, 25992, 31167, 37184, 44581, 53008, 63259, 75076, 89080, 105531, 124752, 146842, 173516, 204141, 239921, 281461, 329929, 385852
Offset: 0
The multiset partition {{2},{2},{1,1},{1,1}} has both properties (constant blocks and common sum), so (2,2,1,1,1,1) is not counted under a(8). We can also use {{2,2},{1,1,1,1}}.
The a(3) = 1 through a(8) = 13 partitions:
(21) (31) (32) (42) (43) (53)
(41) (51) (52) (62)
(221) (321) (61) (71)
(311) (411) (322) (332)
(2111) (331) (431)
(421) (521)
(511) (611)
(2221) (3221)
(3211) (3311)
(4111) (4211)
(22111) (5111)
(31111) (32111)
(211111) (311111)
Twice-partitions of this type (constant with equal) are counted by
A279789.
For distinct instead of equal block-sums we have
A381717.
Normal multiset partitions of this type are counted by
A382204.
A050361 counts factorizations into distinct prime powers, see
A381715.
-
mce[y_]:=Table[ConstantArray[y[[1]],#]&/@ptn,{ptn,IntegerPartitions[Length[y]]}];
Table[Length[Select[IntegerPartitions[n],Length[Select[Join@@@Tuples[mce/@Split[#]],SameQ@@Total/@#&]]==0&]],{n,0,30}]
A382079
Number of integer partitions of n that can be partitioned into a set of sets in exactly one way.
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 3, 4, 6, 5, 10, 9, 13, 14, 21, 20, 32, 31, 42, 47, 63, 62, 90, 94, 117, 138, 170, 186, 235, 260, 315, 363, 429, 493, 588, 674, 795, 901, 1060, 1209, 1431, 1608, 1896, 2152, 2515, 2854, 3310, 3734, 4368, 4905, 5686
Offset: 0
The unique multiset partition for (3222111) is {{1},{2},{1,2},{1,2,3}}.
The a(1) = 1 through a(12) = 13 partitions:
1 2 3 4 5 6 7 8 9 A B C
211 221 411 322 332 441 433 443 552
311 2211 331 422 522 442 533 633
511 611 711 622 551 822
3311 42111 811 722 A11
32111 3322 911 4422
4411 42221 5511
32221 53111 33321
43111 62111 52221
52111 54111
63111
72111
3222111
Normal multiset partitions of this type are counted by
A116539, see
A381718.
These partitions are ranked by
A293511.
Twice-partitions of this type (sets of sets) are counted by
A358914, see
A279785.
For distinct block-sums instead of blocks we have
A382460, ranked by
A381870.
A050320 counts multiset partitions of prime indices into sets.
A050326 counts multiset partitions of prime indices into distinct sets, see
A381633.
A265947 counts refinement-ordered pairs of integer partitions.
-
ssfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#,d]&)/@Select[ssfacs[n/d],Min@@#>d&],{d,Select[Rest[Divisors[n]],SquareFreeQ]}]];
Table[Length[Select[IntegerPartitions[n],Length[ssfacs[Times@@Prime/@#]]==1&]],{n,0,15}]
A322439
Number of ordered pairs of integer partitions of n where no part of the first is greater than any part of the second.
Original entry on oeis.org
1, 1, 3, 5, 11, 15, 33, 42, 82, 114, 195, 258, 466, 587, 954, 1317, 2021, 2637, 4124, 5298, 7995, 10565, 15075, 19665, 28798, 36773, 51509, 67501, 93060, 119299, 165589, 209967, 285535, 366488, 487536, 622509, 833998, 1048119, 1380410, 1754520, 2291406, 2876454
Offset: 0
The a(5) = 15 pairs of integer partitions:
(5)|(5)
(41)|(5)
(32)|(5)
(311)|(5)
(221)|(5)
(221)|(32)
(2111)|(5)
(2111)|(32)
(11111)|(5)
(11111)|(41)
(11111)|(32)
(11111)|(311)
(11111)|(221)
(11111)|(2111)
(11111)|(11111)
Cf.
A026794,
A026820,
A265947,
A285573,
A317144,
A318915,
A322435,
A322436,
A322440,
A322441,
A322442,
A362051.
-
g:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
g(n, i-1) +g(n-i, min(i, n-i)))
end:
b:= proc(n, i) option remember; `if`(n=0, 1,
`if`(i>n, 0, b(n, i+1)+b(n-i, i)))
end:
a:= proc(n) option remember; `if`(n=0, 1,
add(g(n, i)*b(n-i, i), i=1..n))
end:
seq(a(n), n=0..50); # Alois P. Heinz, Dec 09 2018
-
Table[Length[Select[Tuples[IntegerPartitions[n],2],Max@@First[#]<=Min@@Last[#]&]],{n,20}]
(* Second program: *)
g[n_, i_] := g[n, i] = If[n == 0 || i == 1, 1, g[n, i - 1] + g[n - i, Min[i, n - i]]];
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i>n, 0, b[n, i+1] + b[n-i, i]]];
a[n_] := a[n] = If[n == 0, 1, Sum[g[n, i]*b[n - i, i], {i, 1, n}]];
a /@ Range[0, 50] (* Jean-François Alcover, May 17 2021, after Alois P. Heinz *)
A381995
Number of ways to partition the prime indices of n into constant blocks with a common sum.
Original entry on oeis.org
1, 1, 1, 2, 1, 0, 1, 2, 2, 0, 1, 1, 1, 0, 0, 3, 1, 0, 1, 0, 0, 0, 1, 0, 2, 0, 2, 0, 1, 0, 1, 2, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 4, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 3, 0, 1, 0, 0, 0, 0
Offset: 1
The prime indices of 144 are {1,1,1,1,2,2}, with the following 2 multiset partitions into constant blocks with a common sum:
{{2,2},{1,1,1,1}}
{{2},{2},{1,1},{1,1}}
so a(144) = 2.
For just constant blocks we have
A000688.
Twice-partitions of this type are counted by
A279789.
For just a common sum we have
A321455.
For distinct instead of equal sums we have
A381635.
MM-numbers of these multiset partitions are
A382215.
A050361 counts factorizations into distinct prime powers.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]& /@ sps[Range[Length[set]]]];
Table[Length[Select[mps[prix[n]], SameQ@@Total/@#&&And@@SameQ@@@#&]],{n,100}]
A318396
Number of pairs of integer partitions (y, v) of n such that there exists a pair of set partitions of {1,...,n} with meet {{1},...,{n}}, the first having block sizes y and the second v.
Original entry on oeis.org
1, 1, 3, 6, 15, 28, 64, 116, 238, 430, 818, 1426, 2618, 4439, 7775, 12993, 22025, 35946, 59507, 95319, 154073, 243226, 385192, 598531, 933096, 1429794, 2193699, 3322171, 5027995, 7524245, 11253557, 16661211, 24637859, 36130242, 52879638, 76830503, 111422013, 160505622
Offset: 0
The a(4) = 15 pairs of integer partitions:
4, 1111
22, 22
22, 211
22, 1111
31, 211
31, 1111
211, 22
211, 31
211, 211
211, 1111
1111, 4
1111, 22
1111, 31
1111, 211
1111, 1111
The a(4) = 15 combinatory separations:
1111<={1,1,1,1}
1112<={1,1,12}
1112<={1,1,1,1}
1122<={12,12}
1122<={1,1,12}
1122<={1,1,1,1}
1123<={1,123}
1123<={12,12}
1123<={1,1,12}
1123<={1,1,1,1}
1234<={1234}
1234<={1,123}
1234<={12,12}
1234<={1,1,12}
1234<={1,1,1,1}
Cf.
A000041,
A000110,
A001247,
A007716,
A008277,
A029894,
A049311,
A059849,
A116540,
A181939,
A265947,
A269134,
A318393,
A318394,
A327913.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
normize[m_]:=m/.Rule@@@Table[{Union[m][[i]],i},{i,Length[Union[m]]}];
Table[Length[Select[Union@@Table[{m,Sort[normize/@#]}&/@mps[m],{m,strnorm[n]}],And@@UnsameQ@@@#[[2]]&]],{n,6}]
-
IsDom(p,q)=if(#q<#p, 0, my(s=0,t=0); for(i=0, #p-1, s+=p[#p-i]; t+=q[#q-i]; if(t>s, return(0))); 1)
a(n)={if(n<1, n==0, my(s=0); forpart(p=n, forpart(q=n, s+=IsDom(p,q), [1, p[#p]], [#p, n])); s)} \\ Andrew Howroyd, Oct 31 2019
-
\\ faster version.
a(n)={local(Cache=Map());
my(recurse(b, c, s, t)=my(hk=Vecsmall([b, c, s, t]), z);
if(!mapisdefined(Cache, hk, &z),
z = if(s, sum(i=1, min(s, b), sum(j=1, min(t-s+i, c), self()(i, j, s-i, t-j))),
if(t, sum(j=1, min(t, c), self()(b, j, s, t-j)), 1));
mapput(Cache, hk, z)); z);
recurse(n, n, n, n)
} \\ Andrew Howroyd, Oct 31 2019
Comments