cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 59 results. Next

A381870 Numbers whose prime indices have a unique multiset partition into sets with distinct sums.

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 12, 13, 17, 18, 19, 20, 23, 28, 29, 31, 36, 37, 41, 43, 44, 45, 47, 50, 52, 53, 59, 61, 63, 67, 68, 71, 73, 75, 76, 79, 83, 89, 92, 97, 98, 99, 100, 101, 103, 107, 109, 113, 116, 117, 120, 124, 127, 131, 137, 139, 147, 148, 149, 151, 153
Offset: 1

Views

Author

Gus Wiseman, Mar 12 2025

Keywords

Comments

First differs from A212166 in lacking 360.
First differs from A293511 in having 600.
Also numbers with a unique factorization into squarefree numbers with distinct sums of prime indices (A056239).
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239.

Examples

			For n = 600 the unique multiset partition is {{1},{1,3},{1,2,3}}. The unique factorization is 2*10*30.
		

Crossrefs

Without distinct block-sums we have A000961, ones in A050320.
More on set multipartitions: A089259, A116540, A270995, A296119, A318360.
For distinct blocks instead of sums we have A293511, ones in A050326.
These are the positions of ones in A381633, see A381634, A381806, A381990.
Normal multiset partitions of this type are counted by A381718, see A279785.
For constant instead of strict blocks we have A381991, ones in A381635.
A001055 counts multiset partitions of prime indices, strict A045778.
A003963 gives product of prime indices.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A122111 represents conjugation in terms of Heinz numbers.
A265947 counts refinement-ordered pairs of integer partitions.
A317141 counts coarsenings of prime indices, refinements A300383.
A321469 counts factorizations with distinct sums of prime indices, ones A166684.

Programs

  • Mathematica
    hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
    sfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#,d]&)/@Select[sfacs[n/d],Min@@#>=d&],{d,Select[Rest[Divisors[n]],SquareFreeQ]}]];
    Select[Range[100],Length[Select[sfacs[#],UnsameQ@@hwt/@#&]]==1&]

A382077 Number of integer partitions of n that can be partitioned into a set of sets.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 6, 9, 13, 17, 25, 33, 44, 59, 77, 100, 134, 171, 217, 283, 361, 449, 574, 721, 900, 1126, 1397, 1731, 2143, 2632, 3223, 3961, 4825, 5874, 7131, 8646, 10452, 12604, 15155, 18216, 21826, 26108, 31169, 37156, 44202, 52492, 62233, 73676, 87089, 102756, 121074
Offset: 0

Views

Author

Gus Wiseman, Mar 18 2025

Keywords

Comments

First differs from A240306 at a(14) = 76, A240306(14) = 77.
First differs from A381992 at a(17) = 171, A381992(17) = 170.

Examples

			For y = (3,2,2,2,1,1,1), we have the multiset partition {{1},{2},{1,2},{1,2,3}}, so y is counted under a(12).
The a(1) = 1 through a(8) = 13 partitions:
  (1)  (2)  (3)    (4)      (5)      (6)        (7)        (8)
            (2,1)  (3,1)    (3,2)    (4,2)      (4,3)      (5,3)
                   (2,1,1)  (4,1)    (5,1)      (5,2)      (6,2)
                            (2,2,1)  (3,2,1)    (6,1)      (7,1)
                            (3,1,1)  (4,1,1)    (3,2,2)    (3,3,2)
                                     (2,2,1,1)  (3,3,1)    (4,2,2)
                                                (4,2,1)    (4,3,1)
                                                (5,1,1)    (5,2,1)
                                                (3,2,1,1)  (6,1,1)
                                                           (3,2,2,1)
                                                           (3,3,1,1)
                                                           (4,2,1,1)
                                                           (3,2,1,1,1)
		

Crossrefs

Factorizations of this type are counted by A050345.
More on set multipartitions: A089259, A116540, A270995, A296119, A318360.
Normal multiset partitions of this type are counted by A116539.
The MM-numbers of these multiset partitions are A302494.
Twice-partitions of this type are counted by A358914.
For distinct block-sums instead of blocks we have A381992, ranked by A382075.
The complement is counted by A382078, unique A382079.
These partitions are ranked by A382200, complement A293243.
For normal multisets instead of integer partitions we have A382214, complement A292432.
A000041 counts integer partitions, strict A000009.
A050320 counts multiset partitions of prime indices into sets.
A050326 counts multiset partitions of prime indices into distinct sets.
A265947 counts refinement-ordered pairs of integer partitions.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]& /@ sps[Range[Length[set]]]];
    Table[Length[Select[IntegerPartitions[n], Length[Select[mps[#],UnsameQ@@#&&And@@UnsameQ@@@#&]]>0&]],{n,0,9}]

Extensions

a(21)-a(50) from Bert Dobbelaere, Mar 29 2025

A381634 Number of multisets that can be obtained by taking the sum of each block of a set multipartition (multiset of sets) of the prime indices of n with distinct block-sums.

Original entry on oeis.org

1, 1, 1, 0, 1, 2, 1, 0, 0, 2, 1, 1, 1, 2, 2, 0, 1, 1, 1, 1, 2, 2, 1, 0, 0, 2, 0, 1, 1, 4, 1, 0, 2, 2, 2, 1, 1, 2, 2, 0, 1, 5, 1, 1, 1, 2, 1, 0, 0, 1, 2, 1, 1, 0, 2, 0, 2, 2, 1, 3, 1, 2, 1, 0, 2, 5, 1, 1, 2, 4, 1, 0, 1, 2, 1, 1, 2, 5, 1, 0, 0, 2, 1, 4, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Mar 06 2025

Keywords

Comments

First differs from A050326 at a(30) = 4, A050326(30) = 5.
First differs from A339742 at a(42) = 5, A339742(42) = 4.
First differs from A381441 at a(30) = 4, A381441(30) = 5.
First differs from A381633 at a(210) = 10, A381633(210) = 12.
Also the number of multisets that can be obtained by taking the sums of prime indices of each factor in a factorization of n into squarefree numbers > 1 with distinct sums of prime indices (A056239).
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
A multiset partition con be regarded as an arrow in the ranked poset of integer partitions. For example, we have {{1},{1,2},{1,3},{1,2,3}}: {1,1,1,1,2,2,3,3} -> {1,3,4,6}, or (33221111) -> (6431) (depending on notation).
Set multipartitions with distinct block-sums are generally not transitive. For example, we have arrows: {{1},{1,2}}: {1,1,2} -> {1,3} and {{1,3}}: {1,3} -> {4}, but there is no arrow {1,1,2} -> {4}.

Examples

			The prime indices of 120 are {1,1,2,3}, with 3 ways:
  {{1},{1,2,3}}
  {{1,2},{1,3}}
  {{1},{2},{1,3}}
with block-sums: {1,6}, {3,4}, {1,2,4}, so a(120) = 3.
The prime indices of 210 are {1,2,3,4}, with 12 ways:
  {{1,2,3,4}}
  {{1},{2,3,4}}
  {{2},{1,3,4}}
  {{3},{1,2,4}}
  {{4},{1,2,3}}
  {{1,2},{3,4}}
  {{1,3},{2,4}}
  {{1},{2},{3,4}}
  {{1},{3},{2,4}}
  {{1},{4},{2,3}}
  {{2},{3},{1,4}}
  {{1},{2},{3},{4}}
with block-sums: {10}, {1,9}, {2,8}, {3,7}, {4,6}, {3,7}, {4,6}, {1,2,7}, {1,3,6}, {1,4,5}, {2,3,5}, {1,2,3,4}, of which 10 are distinct, so a(210) = 10.
		

Crossrefs

Without distinct block-sums we have A381078 (lower A381454), before sums A050320.
For distinct blocks instead of sums we have A381441, before sums A050326, see A358914.
Before taking sums we had A381633.
Positions of 0 are A381806.
Positions of 1 are A381870, superset of A293511.
More on set multipartitions with distinct sums: A279785, A381717, A381718.
A001055 counts multiset partitions, see A317141 (upper), A300383 (lower).
A003963 gives product of prime indices.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A265947 counts refinement-ordered pairs of integer partitions.

Programs

  • Mathematica
    hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
    sfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#,d]&)/@Select[sfacs[n/d],Min@@#>=d&],{d,Select[Rest[Divisors[n]],SquareFreeQ]}]];
    Table[Length[Union[Sort[hwt/@#]&/@Select[sfacs[n],UnsameQ@@hwt/@#&]]],{n,100}]

A382078 Number of integer partitions of n that cannot be partitioned into a set of sets.

Original entry on oeis.org

0, 0, 1, 1, 2, 2, 5, 6, 9, 13, 17, 23, 33, 42, 58, 76, 97, 126, 168, 207, 266, 343, 428, 534, 675, 832, 1039, 1279, 1575, 1933, 2381, 2881, 3524, 4269, 5179, 6237, 7525, 9033, 10860, 12969, 15512, 18475, 22005, 26105, 30973, 36642, 43325, 51078, 60184, 70769, 83152
Offset: 0

Views

Author

Gus Wiseman, Mar 18 2025

Keywords

Comments

First differs from A240309 at a(11) = 23, A240309(11) = 25.
First differs from A381990 at a(17) = 126, A381990(17) = 127.

Examples

			The partition y = (2,2,1,1,1) can be partitioned into sets in the following ways:
  {{1},{1,2},{1,2}}
  {{1},{1},{2},{1,2}}
  {{1},{1},{1},{2},{2}}
But none of these is itself a set, so y is counted under a(7).
The a(2) = 1 through a(8) = 9 partitions:
  (11)  (111)  (22)    (2111)   (33)      (2221)     (44)
               (1111)  (11111)  (222)     (4111)     (2222)
                                (3111)    (22111)    (5111)
                                (21111)   (31111)    (22211)
                                (111111)  (211111)   (41111)
                                          (1111111)  (221111)
                                                     (311111)
                                                     (2111111)
                                                     (11111111)
		

Crossrefs

More on set multipartitions: A089259, A116540, A270995, A296119, A318360.
For normal multisets see A292432, A292444, A116539.
These partitions are ranked by A293243, complement A382200.
The MM-numbers of these multiset partitions (set of sets) are A302494.
Twice-partitions of this type are counted by A358914.
For distinct sums we have A381990 (ranks A381806), complement A381992 (ranks A382075).
The complement is counted by A382077, unique A382079.
A000041 counts integer partitions, strict A000009.
A050320 counts multiset partitions of prime indices into sets.
A050326 counts multiset partitions into distinct sets, complement A050345.
A265947 counts refinement-ordered pairs of integer partitions.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    Table[Length[Select[IntegerPartitions[n],Length[Select[mps[#],UnsameQ@@#&&And@@UnsameQ@@@#&]]==0&]],{n,0,9}]

Extensions

a(19)-a(50) from Bert Dobbelaere, Mar 29 2025

A381452 Number of multisets that can be obtained by partitioning the prime indices of n into a set of multisets and taking their sums.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 3, 2, 2, 1, 4, 1, 2, 2, 3, 1, 5, 1, 3, 2, 2, 2, 4, 1, 2, 2, 5, 1, 5, 1, 3, 3, 2, 1, 5, 1, 3, 2, 3, 1, 5, 2, 5, 2, 2, 1, 7, 1, 2, 3, 4, 2, 5, 1, 3, 2, 5, 1, 6, 1, 2, 3, 3, 2, 5, 1, 6, 2, 2, 1, 8, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Mar 06 2025

Keywords

Comments

First differs from A045778 at a(24) = 4, A045778(24) = 5.
Also the number of multisets that can be obtained by taking the sums of prime indices of each factor in a factorization of n into distinct factors > 1.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
A multiset partition can be regarded as an arrow in the poset of integer partitions. For example, we have {{1},{1,2},{1,3},{1,2,3}}: {1,1,1,1,2,2,3,3} -> {1,3,4,6}, or (33221111) -> (6431) (depending on notation).
Sets of multisets are generally not transitive. For example, we have arrows: {{1},{2},{1,2}}: {1,1,2,2} -> {1,2,3} and {{1,2},{3}}: {1,2,3} -> {3,3}, but there is no set of multisets {1,1,2,2} -> {3,3}.

Examples

			The prime indices of 24 are {1,1,1,2}, with 5 partitions into a set of multisets:
  {{1,1,1,2}}
  {{1},{1,1,2}}
  {{2},{1,1,1}}
  {{1,1},{1,2}}
  {{1},{2},{1,1}}
with block-sums: {5}, {1,4}, {2,3}, {2,3}, {1,2,2}, of which 4 are distinct, so a(24) = 4.
		

Crossrefs

Before taking sums we had A045778.
If each block is a set we have A381441, before sums A050326.
For distinct block-sums instead of blocks we have A381637, before sums A321469.
Other multiset partitions of prime indices:
- For multisets of constant multisets (A000688) see A381455 (upper), A381453 (lower).
- For multiset partitions (A001055) see A317141 (upper), A300383 (lower).
- For set multipartitions (A050320) see A381078 (upper), A381454 (lower).
- For sets of constant multisets (A050361) see A381715.
- For set systems with distinct sums (A381633) see A381634, zeros A293243.
- For sets of constant multisets with distinct sums (A381635) see A381716, A381636.
More on sets of multisets: A261049, A317776, A317775, A296118, A318286.
A000041 counts integer partitions, strict A000009.
A000040 lists the primes.
A003963 gives product of prime indices.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A122111 represents conjugation in terms of Heinz numbers.
A265947 counts refinement-ordered pairs of integer partitions.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[mset_]:=Union[Sort[Sort/@(#/.x_Integer:>mset[[x]])]&/@sps[Range[Length[mset]]]];
    Table[Length[Union[Sort[Total/@#]&/@Select[mps[prix[n]],UnsameQ@@#&]]],{n,100}]

Formula

a(A002110(n)) = A066723(n).

A381993 Number of integer partitions of n that cannot be partitioned into constant multisets with a common sum.

Original entry on oeis.org

0, 0, 0, 1, 1, 5, 4, 13, 13, 25, 33, 54, 54, 99, 124, 166, 207, 295, 352, 488, 591, 780, 987, 1253, 1488, 1951, 2419, 2993, 3665, 4563, 5508, 6840, 8270, 10127, 12289, 14869, 17781, 21635, 25992, 31167, 37184, 44581, 53008, 63259, 75076, 89080, 105531, 124752, 146842, 173516, 204141, 239921, 281461, 329929, 385852
Offset: 0

Views

Author

Gus Wiseman, Mar 17 2025

Keywords

Examples

			The multiset partition {{2},{2},{1,1},{1,1}} has both properties (constant blocks and common sum), so (2,2,1,1,1,1) is not counted under a(8). We can also use {{2,2},{1,1,1,1}}.
The a(3) = 1 through a(8) = 13 partitions:
  (21)  (31)  (32)    (42)   (43)      (53)
              (41)    (51)   (52)      (62)
              (221)   (321)  (61)      (71)
              (311)   (411)  (322)     (332)
              (2111)         (331)     (431)
                             (421)     (521)
                             (511)     (611)
                             (2221)    (3221)
                             (3211)    (3311)
                             (4111)    (4211)
                             (22111)   (5111)
                             (31111)   (32111)
                             (211111)  (311111)
		

Crossrefs

Twice-partitions of this type (constant with equal) are counted by A279789.
Multiset partitions of this type are ranked by A326534 /\ A355743.
For distinct instead of equal block-sums we have A381717.
These partitions are ranked by A381871, zeros of A381995.
For strict instead of constant blocks we have A381994, see A381719, A382080.
The strict case is A382076.
Normal multiset partitions of this type are counted by A382204.
A001055 counts factorizations, strict A045778.
A050361 counts factorizations into distinct prime powers, see A381715.
A317141 counts coarsenings of prime indices, refinements A300383.

Programs

  • Mathematica
    mce[y_]:=Table[ConstantArray[y[[1]],#]&/@ptn,{ptn,IntegerPartitions[Length[y]]}];
    Table[Length[Select[IntegerPartitions[n],Length[Select[Join@@@Tuples[mce/@Split[#]],SameQ@@Total/@#&]]==0&]],{n,0,30}]

Extensions

a(31)-a(54) from Robert Price, Mar 31 2025

A382079 Number of integer partitions of n that can be partitioned into a set of sets in exactly one way.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 3, 4, 6, 5, 10, 9, 13, 14, 21, 20, 32, 31, 42, 47, 63, 62, 90, 94, 117, 138, 170, 186, 235, 260, 315, 363, 429, 493, 588, 674, 795, 901, 1060, 1209, 1431, 1608, 1896, 2152, 2515, 2854, 3310, 3734, 4368, 4905, 5686
Offset: 0

Views

Author

Gus Wiseman, Mar 20 2025

Keywords

Examples

			The unique multiset partition for (3222111) is {{1},{2},{1,2},{1,2,3}}.
The a(1) = 1 through a(12) = 13 partitions:
  1  2  3  4    5    6     7    8      9      A      B      C
           211  221  411   322  332    441    433    443    552
                311  2211  331  422    522    442    533    633
                           511  611    711    622    551    822
                                3311   42111  811    722    A11
                                32111         3322   911    4422
                                              4411   42221  5511
                                              32221  53111  33321
                                              43111  62111  52221
                                              52111         54111
                                                            63111
                                                            72111
                                                            3222111
		

Crossrefs

Normal multiset partitions of this type are counted by A116539, see A381718.
These partitions are ranked by A293511.
MM-numbers of these multiset partitions (sets of sets) are A302494, see A302478, A382201.
Twice-partitions of this type (sets of sets) are counted by A358914, see A279785.
For at least one choice we have A382077 (ranks A382200), see A381992 (ranks A382075).
For no choices we have A382078 (ranks A293243), see A381990 (ranks A381806).
For distinct block-sums instead of blocks we have A382460, ranked by A381870.
Set multipartitions: A089259, A116540, A270995, A296119, A318360.
A000041 counts integer partitions, strict A000009.
A050320 counts multiset partitions of prime indices into sets.
A050326 counts multiset partitions of prime indices into distinct sets, see A381633.
A265947 counts refinement-ordered pairs of integer partitions.

Programs

  • Mathematica
    ssfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#,d]&)/@Select[ssfacs[n/d],Min@@#>d&],{d,Select[Rest[Divisors[n]],SquareFreeQ]}]];
    Table[Length[Select[IntegerPartitions[n],Length[ssfacs[Times@@Prime/@#]]==1&]],{n,0,15}]

Extensions

a(21)-a(50) from Bert Dobbelaere, Mar 29 2025

A322439 Number of ordered pairs of integer partitions of n where no part of the first is greater than any part of the second.

Original entry on oeis.org

1, 1, 3, 5, 11, 15, 33, 42, 82, 114, 195, 258, 466, 587, 954, 1317, 2021, 2637, 4124, 5298, 7995, 10565, 15075, 19665, 28798, 36773, 51509, 67501, 93060, 119299, 165589, 209967, 285535, 366488, 487536, 622509, 833998, 1048119, 1380410, 1754520, 2291406, 2876454
Offset: 0

Views

Author

Gus Wiseman, Dec 08 2018

Keywords

Examples

			The a(5) = 15 pairs of integer partitions:
      (5)|(5)
     (41)|(5)
     (32)|(5)
    (311)|(5)
    (221)|(5)
    (221)|(32)
   (2111)|(5)
   (2111)|(32)
  (11111)|(5)
  (11111)|(41)
  (11111)|(32)
  (11111)|(311)
  (11111)|(221)
  (11111)|(2111)
  (11111)|(11111)
		

Crossrefs

Programs

  • Maple
    g:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
          g(n, i-1) +g(n-i, min(i, n-i)))
        end:
    b:= proc(n, i) option remember; `if`(n=0, 1,
          `if`(i>n, 0, b(n, i+1)+b(n-i, i)))
        end:
    a:= proc(n) option remember; `if`(n=0, 1,
          add(g(n, i)*b(n-i, i), i=1..n))
        end:
    seq(a(n), n=0..50);  # Alois P. Heinz, Dec 09 2018
  • Mathematica
    Table[Length[Select[Tuples[IntegerPartitions[n],2],Max@@First[#]<=Min@@Last[#]&]],{n,20}]
    (* Second program: *)
    g[n_, i_] := g[n, i] = If[n == 0 || i == 1, 1, g[n, i - 1] + g[n - i, Min[i, n - i]]];
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i>n, 0, b[n, i+1] + b[n-i, i]]];
    a[n_] := a[n] = If[n == 0, 1, Sum[g[n, i]*b[n - i, i], {i, 1, n}]];
    a /@ Range[0, 50] (* Jean-François Alcover, May 17 2021, after Alois P. Heinz *)

Formula

a(n) = Sum_{k = 1..n} A026820(n,k) * A026794(n,k).
a(n) = A000041(2n) - A362051(n) for n>=1. - Alois P. Heinz, Apr 27 2023

A381995 Number of ways to partition the prime indices of n into constant blocks with a common sum.

Original entry on oeis.org

1, 1, 1, 2, 1, 0, 1, 2, 2, 0, 1, 1, 1, 0, 0, 3, 1, 0, 1, 0, 0, 0, 1, 0, 2, 0, 2, 0, 1, 0, 1, 2, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 4, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 3, 0, 1, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Mar 19 2025

Keywords

Comments

Also the number of factorizations of n into prime powers > 1 with equal sums of prime indices.

Examples

			The prime indices of 144 are {1,1,1,1,2,2}, with the following 2 multiset partitions into constant blocks with a common sum:
  {{2,2},{1,1,1,1}}
  {{2},{2},{1,1},{1,1}}
so a(144) = 2.
		

Crossrefs

For just constant blocks we have A000688.
Twice-partitions of this type are counted by A279789.
For just a common sum we have A321455.
For distinct instead of equal sums we have A381635.
Positions of 0 are A381871, counted by A381993.
MM-numbers of these multiset partitions are A382215.
A001055 counts factorizations, strict A045778.
A050361 counts factorizations into distinct prime powers.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A317141 counts coarsenings of prime indices, refinements A300383.
A353864 counts rucksack partitions, ranked by A353866.
Cf. A279784, A295935, A381453 (lower), A381455 (upper).

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]& /@ sps[Range[Length[set]]]];
    Table[Length[Select[mps[prix[n]], SameQ@@Total/@#&&And@@SameQ@@@#&]],{n,100}]

Formula

A323774(n) = Sum_{A056239(k)=n} a(k). Gus Wiseman, Apr 25 2025

A318396 Number of pairs of integer partitions (y, v) of n such that there exists a pair of set partitions of {1,...,n} with meet {{1},...,{n}}, the first having block sizes y and the second v.

Original entry on oeis.org

1, 1, 3, 6, 15, 28, 64, 116, 238, 430, 818, 1426, 2618, 4439, 7775, 12993, 22025, 35946, 59507, 95319, 154073, 243226, 385192, 598531, 933096, 1429794, 2193699, 3322171, 5027995, 7524245, 11253557, 16661211, 24637859, 36130242, 52879638, 76830503, 111422013, 160505622
Offset: 0

Views

Author

Gus Wiseman, Aug 25 2018

Keywords

Comments

A multiset is normal if it spans an initial interval of positive integers, and strongly normal if in addition it has weakly decreasing multiplicities. a(n) is also the number of combinatory separations (see A269134 for definition) of strongly normal multisets of size n into normal sets.
From Andrew Howroyd, Oct 31 2019: (Start)
Also, the number of distinct unordered row and column sums of binary matrices without empty columns or rows and with a total of n ones. Only matrices in which both row and columns sums are weakly increasing need to be considered.
By the Gale-Ryser theorem this is equivalent to the number of pairs of integer partitions (y,v) of n with y dominating v. (End)

Examples

			The a(4) = 15 pairs of integer partitions:
     4, 1111
    22, 22
    22, 211
    22, 1111
    31, 211
    31, 1111
   211, 22
   211, 31
   211, 211
   211, 1111
  1111, 4
  1111, 22
  1111, 31
  1111, 211
  1111, 1111
The a(4) = 15 combinatory separations:
  1111<={1,1,1,1}
  1112<={1,1,12}
  1112<={1,1,1,1}
  1122<={12,12}
  1122<={1,1,12}
  1122<={1,1,1,1}
  1123<={1,123}
  1123<={12,12}
  1123<={1,1,12}
  1123<={1,1,1,1}
  1234<={1234}
  1234<={1,123}
  1234<={12,12}
  1234<={1,1,12}
  1234<={1,1,1,1}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
    normize[m_]:=m/.Rule@@@Table[{Union[m][[i]],i},{i,Length[Union[m]]}];
    Table[Length[Select[Union@@Table[{m,Sort[normize/@#]}&/@mps[m],{m,strnorm[n]}],And@@UnsameQ@@@#[[2]]&]],{n,6}]
  • PARI
    IsDom(p,q)=if(#q<#p, 0, my(s=0,t=0); for(i=0, #p-1, s+=p[#p-i]; t+=q[#q-i]; if(t>s, return(0))); 1)
    a(n)={if(n<1, n==0, my(s=0); forpart(p=n, forpart(q=n, s+=IsDom(p,q), [1, p[#p]], [#p, n])); s)} \\ Andrew Howroyd, Oct 31 2019
    
  • PARI
    \\ faster version.
    a(n)={local(Cache=Map());
      my(recurse(b, c, s, t)=my(hk=Vecsmall([b, c, s, t]), z);
         if(!mapisdefined(Cache, hk, &z),
           z = if(s, sum(i=1, min(s, b), sum(j=1, min(t-s+i, c), self()(i, j, s-i, t-j))),
               if(t, sum(j=1, min(t, c), self()(b, j, s, t-j)), 1));
           mapput(Cache, hk, z)); z);
      recurse(n, n, n, n)
    } \\ Andrew Howroyd, Oct 31 2019

Extensions

Terms a(9) and beyond from Andrew Howroyd, Oct 31 2019
Previous Showing 21-30 of 59 results. Next