cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 181 results. Next

A057335 a(0) = 1, and for n > 0, a(n) = A000040(A000120(n)) * a(floor(n/2)); essentially sequence A055932 generated using A000120, hence sorted by number of factors.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 18, 30, 16, 24, 36, 60, 54, 90, 150, 210, 32, 48, 72, 120, 108, 180, 300, 420, 162, 270, 450, 630, 750, 1050, 1470, 2310, 64, 96, 144, 240, 216, 360, 600, 840, 324, 540, 900, 1260, 1500, 2100, 2940, 4620, 486, 810, 1350, 1890, 2250, 3150, 4410
Offset: 0

Views

Author

Alford Arnold, Aug 27 2000

Keywords

Comments

Note that for n>0 the prime divisors of a(n) are consecutive primes starting with 2. All of the least prime signatures (A025487) are included; with the other values forming A056808.
Using the formula, terms of b(n)= a(n)/A057334(n) are: 1, 1, 2, 2, 4, 4, 6, 6, 8, ..., indeed a(n) repeated. - Michel Marcus, Feb 09 2014
a(n) is the unique normal number whose unsorted prime signature is the k-th composition in standard order (graded reverse-lexicographic). This composition (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. A number is normal if its prime indices cover an initial interval of positive integers. Unsorted prime signature is the sequence of exponents in a number's prime factorization. - Gus Wiseman, Apr 19 2020

Examples

			From _Gus Wiseman_, Apr 19 2020: (Start)
The sequence of terms together with their prime indices begins:
      1: {}
      2: {1}
      4: {1,1}
      6: {1,2}
      8: {1,1,1}
     12: {1,1,2}
     18: {1,2,2}
     30: {1,2,3}
     16: {1,1,1,1}
     24: {1,1,1,2}
     36: {1,1,2,2}
     60: {1,1,2,3}
     54: {1,2,2,2}
     90: {1,2,2,3}
    150: {1,2,3,3}
    210: {1,2,3,4}
     32: {1,1,1,1,1}
     48: {1,1,1,1,2}
For example, the 27th composition in standard order is (1,2,1,1), and the normal number with prime signature (1,2,1,1) is 630 = 2*3*3*5*7, so a(27) = 630.
(End)
		

Crossrefs

Cf. A324939.
Unsorted prime signature is A124010.
Numbers whose prime signature is aperiodic are A329139.
The reversed version is A334031.
A partial inverse is A334032.
All of the following pertain to compositions in standard order (A066099):
- Length is A000120.
- Sum is A070939.
- Strict compositions are A233564.
- Constant compositions are A272919.
- Aperiodic compositions are A328594.
- Normal compositions are A333217.
- Permutations are A333218.
- Heinz number is A333219.
Related to A019565 via A122111 and to A000079 via A336321.

Programs

  • Mathematica
    Table[Times @@ Map[If[# == 0, 1, Prime@ #] &, Accumulate@ IntegerDigits[n, 2]], {n, 0, 54}] (* Michael De Vlieger, May 23 2017 *)
  • PARI
    mg(n) = if (n==0, 1, prime(hammingweight(n))); \\ A057334
    lista(nn) = {my(v = vector(nn)); v[1] = 1; for (i=2, nn, v[i] = mg(i-1)*v[(i+1)\2];); v;} \\ Michel Marcus, Feb 09 2014
    
  • PARI
    A057335(n) = if(0==n,1,prime(hammingweight(n))*A057335(n\2)); \\ Antti Karttunen, Jul 20 2020

Formula

a(n) = A057334(n) * a (repeated).
A334032(a(n)) = n; a(A334032(n)) = A071364(n). - Gus Wiseman, Apr 19 2020
a(n) = A122111(A019565(n)); A019565(n) = A122111(a(n)). - Peter Munn, Jul 18 2020
a(n) = A336321(2^n). - Peter Munn, Mar 04 2022
Sum_{n>=0} 1/a(n) = Sum_{n>=0} 1/A005867(n) = 2.648101... (A345974). - Amiram Eldar, Jun 26 2025

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 29 2003
New primary name from Antti Karttunen, Jul 20 2020

A351291 Numbers k such that the k-th composition in standard order does not have all distinct runs.

Original entry on oeis.org

13, 22, 25, 45, 46, 49, 53, 54, 59, 76, 77, 82, 89, 91, 93, 94, 97, 101, 102, 105, 108, 109, 110, 115, 118, 141, 148, 150, 153, 156, 162, 165, 166, 173, 177, 178, 180, 181, 182, 183, 187, 189, 190, 193, 197, 198, 201, 204, 205, 209, 210, 213, 214, 216, 217
Offset: 1

Views

Author

Gus Wiseman, Feb 12 2022

Keywords

Comments

The n-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of n, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The terms together with their binary expansions and corresponding compositions begin:
  13:     1101  (1,2,1)
  22:    10110  (2,1,2)
  25:    11001  (1,3,1)
  45:   101101  (2,1,2,1)
  46:   101110  (2,1,1,2)
  49:   110001  (1,4,1)
  53:   110101  (1,2,2,1)
  54:   110110  (1,2,1,2)
  59:   111011  (1,1,2,1,1)
  76:  1001100  (3,1,3)
  77:  1001101  (3,1,2,1)
  82:  1010010  (2,3,2)
  89:  1011001  (2,1,3,1)
  91:  1011011  (2,1,2,1,1)
  93:  1011101  (2,1,1,2,1)
  94:  1011110  (2,1,1,1,2)
		

Crossrefs

The version for Heinz numbers of partitions is A130092, complement A130091.
Normal multisets with a permutation of this type appear to be A283353.
Partitions w/o permutations of this type are A351204, complement A351203.
The version using binary expansions is A351205, complement A175413.
The complement is A351290, counted by A351013.
A005811 counts runs in binary expansion, distinct A297770.
A011782 counts integer compositions.
A044813 lists numbers whose binary expansion has all distinct run-lengths.
A085207 represents concatenation of standard compositions, reverse A085208.
A333489 ranks anti-runs, complement A348612, counted by A003242.
A345167 ranks alternating compositions, counted by A025047.
Counting words with all distinct runs:
- A351016 = binary words, for run-lengths A351017.
- A351018 = binary expansions, for run-lengths A032020.
- A351200 = patterns, for run-lengths A351292.
- A351202 = permutations of prime factors.
Selected statistics of standard compositions (A066099, reverse A228351):
- Length is A000120.
- Sum is A070939.
- Runs are counted by A124767, distinct A351014.
- Heinz number is A333219.
- Number of distinct parts is A334028.
Selected classes of standard compositions:
- Partitions are A114994, strict A333256.
- Multisets are A225620, strict A333255.
- Strict compositions are A233564.
- Constant compositions are A272919.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],!UnsameQ@@Split[stc[#]]&]

A374519 Numbers k such that the leaders of anti-runs in the k-th composition in standard order (A066099) are identical.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 44, 45, 48, 49, 50, 51, 52, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 72, 73, 76, 77, 80, 81, 82, 84, 85
Offset: 1

Views

Author

Gus Wiseman, Aug 01 2024

Keywords

Comments

The leaders of anti-runs in a sequence are obtained by splitting it into maximal consecutive anti-runs (sequences with no adjacent equal terms) and taking the first term of each.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The 346th composition in standard order is (2,2,1,2,2), with anti-runs ((2),(2,1,2),(2)), with leaders (2,2,2), so 346 is in the sequence.
		

Crossrefs

Positions of constant rows in A374515.
Compositions of this type are counted by A374517.
The complement is A374520.
For distinct instead of identical leaders we have A374638, counted by A374518.
Other types of runs (instead of anti-):
- For identical runs we have A272919, counted by A000005.
- For weakly increasing runs we have A374633, counted by A374631.
- For strictly increasing runs we have A374685, counted by A374686.
- For weakly decreasing runs we have A374744, counted by A374742.
- For strictly decreasing runs we have A374759, counted by A374760.
A065120 gives leaders of standard compositions.
A106356 counts compositions by number of maximal anti-runs.
A238279 counts compositions by number of maximal runs.
A238424 counts partitions whose first differences are an anti-run.
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1).
- Parts are listed by A066099.
- Number of adjacent equal pairs is A124762, unequal A333382.
- Anti-runs are ranked by A333489, counted by A003242.
- Run-length transform is A333627, sum A070939.
- Run-compression transform is A373948, sum A373953, excess A373954.
- Ranks of contiguous compositions are A374249, counted by A274174.
Six types of maximal runs:

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],SameQ@@First/@Split[stc[#],UnsameQ]&]

A374686 Number of integer compositions of n whose leaders of strictly increasing runs are identical.

Original entry on oeis.org

1, 1, 2, 3, 6, 9, 17, 29, 51, 91, 162, 291, 523, 948, 1712, 3112, 5656, 10297, 18763, 34217, 62442, 114006, 208239, 380465, 695342, 1271046, 2323818, 4249113, 7770389, 14210991, 25991853, 47541734, 86962675, 159077005, 291001483, 532345978, 973871397
Offset: 0

Views

Author

Gus Wiseman, Jul 27 2024

Keywords

Comments

The leaders of strictly increasing runs in a sequence are obtained by splitting it into maximal strictly increasing subsequences and taking the first term of each.
Also the number of ways to choose a strict integer partition of each part of an integer composition of n (A304969) such that the minima are identical. For maxima instead of minima we have A374760. For all partitions (not just strict) we have A374704, for maxima A358905.

Examples

			The composition (2,3,2,2,3,4) has strictly increasing runs ((2,3),(2),(2,3,4)), with leaders (2,2,2), so is counted under a(16).
The a(0) = 1 through a(6) = 17 compositions:
  ()  (1)  (2)   (3)    (4)     (5)      (6)
           (11)  (12)   (13)    (14)     (15)
                 (111)  (22)    (23)     (24)
                        (112)   (113)    (33)
                        (121)   (131)    (114)
                        (1111)  (1112)   (123)
                                (1121)   (141)
                                (1211)   (222)
                                (11111)  (1113)
                                         (1131)
                                         (1212)
                                         (1311)
                                         (11112)
                                         (11121)
                                         (11211)
                                         (12111)
                                         (111111)
		

Crossrefs

Ranked by A374685.
Types of runs (instead of strictly increasing):
- For leaders of identical runs we have A000005 for n > 0, ranks A272919.
- For leaders of anti-runs we have A374517, ranks A374519.
- For leaders of weakly increasing runs we have A374631, ranks A374633.
- For leaders of weakly decreasing runs we have A374742, ranks A374744.
- For leaders of strictly decreasing runs we have A374760, ranks A374759.
Types of run-leaders (instead of identical):
- For distinct leaders we have A374687, ranks A374698.
- For strictly increasing leaders we have A374688.
- For strictly decreasing leaders we have A374689.
- For weakly increasing leaders we have A374690.
- For weakly decreasing leaders we have A374697.
A003242 counts anti-run compositions, ranks A333489.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
A274174 counts contiguous compositions, ranks A374249.
A335456 counts patterns matched by compositions.
A335548 counts non-contiguous compositions, ranks A374253.
A373949 counts compositions by run-compressed sum, opposite A373951.
A374683 lists leaders of strictly increasing runs of standard compositions.
A374700 counts compositions by sum of leaders of strictly increasing runs.

Programs

  • Mathematica
    Table[Length[Select[Join @@ Permutations/@IntegerPartitions[n],SameQ@@First/@Split[#,Less]&]],{n,0,15}]
  • PARI
    seq(n) = Vec(1 + sum(k=1, n, 1/(1 - x^k*prod(j=k+1, n-k, 1 + x^j, 1 + O(x^(n-k+1))))-1)) \\ Andrew Howroyd, Jul 27 2024

Extensions

a(26) onwards from Andrew Howroyd, Jul 27 2024

A022340 Even Fibbinary numbers (A003714); also 2*Fibbinary(n).

Original entry on oeis.org

0, 2, 4, 8, 10, 16, 18, 20, 32, 34, 36, 40, 42, 64, 66, 68, 72, 74, 80, 82, 84, 128, 130, 132, 136, 138, 144, 146, 148, 160, 162, 164, 168, 170, 256, 258, 260, 264, 266, 272, 274, 276, 288, 290, 292, 296, 298, 320, 322, 324, 328, 330, 336, 338, 340, 512
Offset: 0

Views

Author

Keywords

Comments

Positions of ones in binomial(3k+2,k+1)/(3k+2) modulo 2 (A085405). - Paul D. Hanna, Jun 29 2003
Construction: start with strings S(0)={0}, S(1)={2}; for k>=2, concatenate all prior strings excluding S(k-1) and add 2^k to each element in the resulting string to obtain S(k); this sequence is the concatenation of all such generated strings: {S(0),S(1),S(2),...}. Example: for k=5, concatenate {S(0),S(1),S(2),S(3)} = {0, 2, 4, 8,10}; add 2^5 to each element to obtain S(5)={32,34,38,40,42}. - Paul D. Hanna, Jun 29 2003
From Gus Wiseman, Apr 08 2020: (Start)
The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions. This sequence lists all numbers k such that the k-th composition in standard order has no ones. For example, the sequence together with the corresponding compositions begins:
0: () 80: (2,5) 260: (6,3)
2: (2) 82: (2,3,2) 264: (5,4)
4: (3) 84: (2,2,3) 266: (5,2,2)
8: (4) 128: (8) 272: (4,5)
10: (2,2) 130: (6,2) 274: (4,3,2)
16: (5) 132: (5,3) 276: (4,2,3)
18: (3,2) 136: (4,4) 288: (3,6)
20: (2,3) 138: (4,2,2) 290: (3,4,2)
32: (6) 144: (3,5) 292: (3,3,3)
34: (4,2) 146: (3,3,2) 296: (3,2,4)
36: (3,3) 148: (3,2,3) 298: (3,2,2,2)
40: (2,4) 160: (2,6) 320: (2,7)
42: (2,2,2) 162: (2,4,2) 322: (2,5,2)
64: (7) 164: (2,3,3) 324: (2,4,3)
66: (5,2) 168: (2,2,4) 328: (2,3,4)
68: (4,3) 170: (2,2,2,2) 330: (2,3,2,2)
72: (3,4) 256: (9) 336: (2,2,5)
74: (3,2,2) 258: (7,2) 338: (2,2,3,2)
(End)

Crossrefs

Equals 2 * A003714.
Compositions with no ones are counted by A212804.
All of the following pertain to compositions in standard order (A066099):
- Length is A000120.
- Compositions without terms > 2 are A003754.
- Compositions without ones are A022340 (this sequence).
- Sum is A070939.
- Compositions with no twos are A175054.
- Strict compositions are A233564.
- Constant compositions are A272919.
- Normal compositions are A333217.
- Runs-resistance is A333628.

Programs

  • Haskell
    a022340 = (* 2) . a003714 -- Reinhard Zumkeller, Feb 03 2015
    
  • Mathematica
    f[n_Integer] := Block[{k = Ceiling[ Log[ GoldenRatio, n*Sqrt[5]]], t = n, fr = {}}, While[k > 1, If[t >= Fibonacci[k], AppendTo[fr, 1]; t = t - Fibonacci[k], AppendTo[fr, 0]]; k-- ]; FromDigits[fr, 2]]; Select[f /@ Range[0, 95], EvenQ[ # ] &] (* Robert G. Wilson v, Sep 18 2004 *)
    Select[Range[2, 512, 2], BitAnd[#, 2#] == 0 &] (* Alonso del Arte, Jun 18 2012 *)
  • Python
    from itertools import count, islice
    def A022340_gen(startvalue=0): # generator of terms >= startvalue
        return filter(lambda n:not n&(n>>1),count(max(0,startvalue+(startvalue&1)),2))
    A022340_list = list(islice(A022340_gen(),30)) # Chai Wah Wu, Sep 07 2022
    
  • Python
    def A022340(n):
        tlist, s = [1,2], 0
        while tlist[-1]+tlist[-2] <= n: tlist.append(tlist[-1]+tlist[-2])
        for d in tlist[::-1]:
            if d <= n:
                s += 1
                n -= d
            s <<= 1
        return s # Chai Wah Wu, Apr 24 2025

Formula

For n>0, a(F(n))=2^n, a(F(n)-1)=A001045(n+2)-1, where F(n) is the n-th Fibonacci number with F(0)=F(1)=1.
a(n) + a(n)/2 = a(n) XOR a(n)/2, see A106409. - Reinhard Zumkeller, May 02 2005

Extensions

Edited by Ralf Stephan, Sep 01 2004

A374633 Numbers k such that the leaders of weakly increasing runs in the k-th composition in standard order (A066099) are identical.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 7, 8, 10, 12, 13, 14, 15, 16, 20, 24, 25, 26, 27, 28, 29, 30, 31, 32, 36, 40, 42, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 72, 80, 82, 84, 96, 97, 99, 100, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 115
Offset: 1

Views

Author

Gus Wiseman, Jul 21 2024

Keywords

Comments

The leaders of weakly increasing runs in a sequence are obtained by splitting it into maximal weakly increasing subsequences and taking the first term of each.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The maximal weakly increasing subsequences of the 26165th composition in standard order are ((1,3),(1,4),(1,2,2),(1)), with leaders (1,1,1,1), so 26165 is in the sequence.
The sequence together with the corresponding compositions begins:
   0: ()
   1: (1)
   2: (2)
   3: (1,1)
   4: (3)
   6: (1,2)
   7: (1,1,1)
   8: (4)
  10: (2,2)
  12: (1,3)
  13: (1,2,1)
  14: (1,1,2)
  15: (1,1,1,1)
  16: (5)
  20: (2,3)
  24: (1,4)
  25: (1,3,1)
  26: (1,2,2)
  27: (1,2,1,1)
		

Crossrefs

For strictly decreasing leaders we appear to have A188920.
For weakly decreasing leaders we appear to have A189076.
Other types of runs: A272919 (counted by A000005), A374519 (counted by A374517), A374685 (counted by A374686), A374744 (counted by A374742), A374759 (counted by A374760).
Positions of constant rows in A374629 (which has sums A374630).
Compositions of this type are counted by A374631.
For strictly increasing leaders see A374634.
For all different leaders we have A374768, counted by A374632.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
A374637 counts compositions by sum of leaders of weakly increasing runs.
All of the following pertain to compositions in standard order:
- Ones are counted by A000120.
- Sum is A029837 (or sometimes A070939).
- Parts are listed by A066099.
- Length is A070939.
- Adjacent equal pairs are counted by A124762, unequal A333382.
- Number of max runs: A124765, A124766, A124767, A124768, A124769, A333381.
- Ranks of anti-run compositions are A333489, counted by A003242.
- Run-length transform is A333627.
- Run-compression transform is A373948, sum A373953, excess A373954.
- Ranks of contiguous compositions are A374249, counted by A274174.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],SameQ@@First/@Split[stc[#],LessEqual]&]

A374701 Numbers k such that the leaders of weakly decreasing runs in the k-th composition in standard order (A066099) are distinct.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71
Offset: 1

Views

Author

Gus Wiseman, Jul 24 2024

Keywords

Comments

First differs from A335469 in having 150, which corresponds to the composition (3,2,1,2).
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The maximal weakly decreasing subsequences of the 1257th composition in standard order are ((3,1,1),(2),(3,1)), with leaders (3,2,3), so 1257 is not in the sequence.
		

Crossrefs

Positions of distinct (strict) rows in A374740, opposite A374629.
Compositions of this type are counted by A374743.
For identical leaders we have A374744, counted by A374742.
Other types of runs and their counts: A374249 (A274174), A374638 (A374518), A374698 (A374687), A374767 (A374761), A374768 (A374632).
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
A335456 counts patterns matched by compositions.
A373949 counts compositions by run-compressed sum.
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1) (or sometimes A070939).
- Parts are listed by A066099.
- Adjacent equal pairs are counted by A124762, unequal A333382.
- Number of max runs: A124765, A124766, A124767, A124768, A124769, A333381.
- Ranks of anti-run compositions are A333489, counted by A003242.
- Run-length transform is A333627.
- Run-compression transform is A373948, sum A373953, excess A373954.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],UnsameQ@@First/@Split[stc[#],GreaterEqual]&] (* Gus Wiseman, Jul 24 2024 *)

A374760 Number of integer compositions of n whose leaders of strictly decreasing runs are identical.

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 8, 11, 15, 21, 28, 38, 52, 70, 95, 129, 173, 234, 318, 428, 579, 784, 1059, 1433, 1942, 2630, 3564, 4835, 6559, 8902, 12094, 16432, 22340, 30392, 41356, 56304, 76692, 104499, 142448, 194264, 265015, 361664, 493749, 674278, 921113, 1258717
Offset: 0

Views

Author

Gus Wiseman, Jul 29 2024

Keywords

Comments

The leaders of strictly decreasing runs in a sequence are obtained by splitting it into maximal strictly decreasing subsequences and taking the first term of each.

Examples

			The composition (3,3,2,1,3,2,1) has strictly decreasing runs ((3),(3,2,1),(3,2,1)), with leaders (3,3,3), so is counted under a(15).
The a(0) = 1 through a(8) = 15 compositions:
  ()  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
           (11)  (21)   (22)    (32)     (33)      (43)       (44)
                 (111)  (31)    (41)     (42)      (52)       (53)
                        (1111)  (212)    (51)      (61)       (62)
                                (221)    (222)     (313)      (71)
                                (11111)  (321)     (331)      (323)
                                         (2121)    (421)      (332)
                                         (111111)  (2122)     (431)
                                                   (2212)     (521)
                                                   (2221)     (2222)
                                                   (1111111)  (3131)
                                                              (21212)
                                                              (21221)
                                                              (22121)
                                                              (11111111)
		

Crossrefs

For partitions instead of compositions we have A034296.
The weak version is A374742, ranks A374744.
The opposite version is A374686, ranks A374685.
The weak opposite version is A374631, ranks A374633.
Ranked by A374759.
Other types of runs (instead of strictly decreasing):
- For leaders of identical runs we have A000005 for n > 0, ranks A272919.
- For leaders of anti-runs we have A374517, ranks A374519.
Other types of run-leaders (instead of identical):
- For distinct leaders we have A374761, ranks A374767.
- For strictly increasing leaders we have A374762.
- For strictly decreasing leaders we have A374763.
- For weakly increasing leaders we have A374764.
- For weakly decreasing leaders we have A374765.
A003242 counts anti-run compositions, ranks A333489.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
A274174 counts contiguous compositions, ranks A374249.
A373949 counts compositions by run-compressed sum, opposite A373951.

Programs

  • Mathematica
    Table[Length[Select[Join @@ Permutations/@IntegerPartitions[n],SameQ@@First/@Split[#,Greater]&]],{n,0,15}]
  • PARI
    seq(n) = Vec(1 + sum(k=1, n, 1/(1 - x^k*prod(j=1, min(n-k,k-1), 1 + x^j, 1 + O(x^(n-k+1))))-1)) \\ Andrew Howroyd, Jul 31 2024

Formula

G.f.: 1 + Sum_{k>=1} -1 + 1/(1 - x^k*Product_{j=1..k-1} (1 + x^j)). - Andrew Howroyd, Jul 31 2024

Extensions

a(24) onwards from Andrew Howroyd, Jul 31 2024

A375123 Weakly increasing run-leader transformation for standard compositions.

Original entry on oeis.org

0, 1, 2, 1, 4, 5, 1, 1, 8, 9, 2, 5, 1, 3, 1, 1, 16, 17, 18, 9, 2, 5, 5, 5, 1, 3, 1, 3, 1, 3, 1, 1, 32, 33, 34, 17, 4, 37, 9, 9, 2, 5, 2, 5, 5, 11, 5, 5, 1, 3, 6, 3, 1, 3, 3, 3, 1, 3, 1, 3, 1, 3, 1, 1, 64, 65, 66, 33, 68, 69, 17, 17, 4, 9, 18, 37, 9, 19, 9, 9
Offset: 0

Views

Author

Gus Wiseman, Aug 02 2024

Keywords

Comments

The a(n)-th composition in standard order lists the leaders of weakly increasing runs of the n-th composition in standard order.
The leaders of weakly increasing runs in a sequence are obtained by splitting it into maximal weakly increasing subsequences and taking the first term of each.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The 813th composition in standard order is (1,3,2,1,2,1), with weakly increasing runs ((1,3),(2),(1,2),(1)), with leaders (1,2,1,1). This is the 27th composition in standard order, so a(813) = 27.
		

Crossrefs

Positions of elements of A233564 are A374768, counted by A374632.
Positions of elements of A272919 are A374633, counted by A374631.
Ranks of rows of A374629.
The opposite version is A375124.
The strict version is A375125.
The strict opposite version is A375126.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1).
- Leader is A065120.
- Parts are listed by A066099.
- Number of adjacent equal pairs is A124762, unequal A333382.
- Run-length transform is A333627, sum A070939.
- Run-sum transformation is A353847.
- Run-compression transform is A373948, sum A373953, excess A373954.
- Ranks of contiguous compositions are A374249, counted by A274174.
Six types of runs:

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    stcinv[q_]:=Total[2^(Accumulate[Reverse[q]])]/2;
    Table[stcinv[First/@Split[stc[n],LessEqual]],{n,0,100}]

Formula

A000120(a(n)) = A124766(n).
A070939(a(n)) = A374630(n) for n > 0.
A065120(a(n)) = A065120(n).

A333632 Rotational period of the k-th composition in standard order; a(0) = 0.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 3, 2, 3, 3, 1, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 1, 1, 2, 2, 3, 1, 3, 3, 4, 2, 3, 1, 4, 3, 2, 4, 5, 2, 3, 3, 4, 3, 4, 2, 5, 3, 4, 4, 5, 4, 5, 5, 1, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4
Offset: 0

Views

Author

Gus Wiseman, Apr 12 2020

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The a(299) = 5 rotations:
  (1,1,3,2,2)
  (1,3,2,2,1)
  (3,2,2,1,1)
  (2,2,1,1,3)
  (2,1,1,3,2)
The a(9933) = 4 rotations:
  (1,2,1,3,1,2,1,3)
  (1,3,1,2,1,3,1,2)
  (2,1,3,1,2,1,3,1)
  (3,1,2,1,3,1,2,1)
		

Crossrefs

Aperiodic compositions are counted by A000740.
Aperiodic binary words are counted by A027375.
The orderless period of prime indices is A052409.
Numbers whose binary expansion is periodic are A121016.
Periodic compositions are counted by A178472.
The version for binary expansion is A302291.
Numbers whose prime signature is aperiodic are A329139.
Compositions by number of distinct rotations are A333941.
All of the following pertain to compositions in standard order (A066099):
- Length is A000120.
- Necklaces are A065609.
- Sum is A070939.
- Equal runs are counted by A124767.
- Rotational symmetries are counted by A138904.
- Strict compositions are A233564.
- Constant compositions are A272919.
- Lyndon compositions are A275692.
- Co-Lyndon compositions are A326774.
- Aperiodic compositions are A328594.
- Rotational period is A333632 (this sequence).
- Co-necklaces are A333764.
- Reversed necklaces are A333943.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Length[Union[Array[RotateRight[stc[n],#]&,DigitCount[n,2,1]]]],{n,0,100}]

Formula

a(n) = A000120(n)/A138904(n) = A302291(n) - A023416(n)/A138904(n).
Previous Showing 61-70 of 181 results. Next