A321454
Numbers that can be factored into two or more factors all having the same sum of prime indices.
Original entry on oeis.org
4, 8, 9, 12, 16, 25, 27, 30, 32, 36, 40, 48, 49, 63, 64, 70, 81, 84, 90, 100, 108, 112, 120, 121, 125, 128, 144, 150, 154, 160, 165, 169, 180, 192, 196, 198, 200, 210, 216, 220, 225, 240, 243, 252, 256, 264, 270, 273, 280, 286, 288, 289, 300, 320, 324, 325
Offset: 1
The sequence of all integer partitions that can be partitioned into two or more blocks with equal sums begins: (11), (111), (22), (211), (1111), (33), (222), (321), (11111), (2211), (3111), (21111), (44), (422), (111111), (431), (2222), (4211), (3221), (3311), (22211), (41111), (32111), (55), (333), (1111111), (221111), (3321), (541), (311111), (532), (66), (32211), (2111111), (4411), (5221), (33111).
The Heinz number of (32111) is 120, which has factorization (10*12) corresponding to the multiset partition ((13)(112)) whose blocks have equal sums, so 120 belongs to the sequence.
Cf.
A056239,
A112798,
A276024,
A279787,
A305551,
A306017,
A317144,
A320322,
A321451,
A321452,
A321453.
-
hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
Select[Range[100],Select[facs[#],And[Length[#]>1,SameQ@@hwt/@#]&]!={}&]
A325862
Number of integer partitions of n such that every set of distinct parts has a different sum.
Original entry on oeis.org
1, 1, 2, 3, 5, 7, 10, 14, 19, 26, 34, 46, 58, 77, 93, 122, 146, 188, 217, 282, 327, 410, 470, 596, 673, 848, 947, 1178, 1325, 1629, 1798, 2213, 2444, 2962, 3247, 3935, 4292, 5149, 5579, 6674, 7247, 8590, 9221, 10964, 11804, 13870, 14843, 17480, 18675, 21866
Offset: 0
The a(1) = 1 through a(7) = 14 partitions:
(1) (2) (3) (4) (5) (6) (7)
(11) (21) (22) (32) (33) (43)
(111) (31) (41) (42) (52)
(211) (221) (51) (61)
(1111) (311) (222) (322)
(2111) (411) (331)
(11111) (2211) (421)
(3111) (511)
(21111) (2221)
(111111) (4111)
(22111)
(31111)
(211111)
(1111111)
The three non-knapsack partitions counted under a(6) are:
(2,2,1,1)
(3,1,1,1)
(2,1,1,1,1)
Cf.
A002033,
A034444,
A196723,
A275972,
A276024,
A299702,
A325592,
A325856,
A325863,
A325864,
A325865,
A325877.
-
Table[Length[Select[IntegerPartitions[n],UnsameQ@@Plus@@@Subsets[Union[#]]&]],{n,0,20}]
A321453
Numbers that cannot be factored into two or more factors all having the same sum of prime indices.
Original entry on oeis.org
1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 28, 29, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 82, 83, 85
Offset: 1
The sequence of all integer partitions that cannot be partitioned into two or more blocks with equal sums begins: (1), (2), (3), (21), (4), (31), (5), (6), (41), (32), (7), (221), (8), (311), (42), (51), (9), (2111), (61), (411).
Cf.
A056239,
A112798,
A276024,
A279787,
A305551,
A306017,
A317144,
A320322,
A321451,
A321452,
A321454.
-
hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
Select[Range[100],Select[facs[#],And[Length[#]>1,SameQ@@hwt/@#]&]=={}&]
A365924
Number of incomplete integer partitions of n, meaning not every number from 0 to n is the sum of some submultiset.
Original entry on oeis.org
0, 0, 1, 1, 3, 3, 6, 7, 12, 14, 22, 25, 38, 46, 64, 76, 106, 124, 167, 199, 261, 309, 402, 471, 604, 714, 898, 1053, 1323, 1542, 1911, 2237, 2745, 3201, 3913, 4536, 5506, 6402, 7706, 8918, 10719, 12364, 14760, 17045, 20234, 23296, 27600, 31678, 37365, 42910, 50371, 57695, 67628, 77300, 90242, 103131, 119997
Offset: 0
The a(0) = 0 through a(8) = 12 partitions:
. . (2) (3) (4) (5) (6) (7) (8)
(2,2) (3,2) (3,3) (4,3) (4,4)
(3,1) (4,1) (4,2) (5,2) (5,3)
(5,1) (6,1) (6,2)
(2,2,2) (3,2,2) (7,1)
(4,1,1) (3,3,1) (3,3,2)
(5,1,1) (4,2,2)
(4,3,1)
(5,2,1)
(6,1,1)
(2,2,2,2)
(5,1,1,1)
These partitions have ranks
A365830.
A046663 counts partitions w/o a submultiset summing to k, strict
A365663.
A325799 counts non-subset-sums of prime indices.
A364350 counts combination-free strict partitions.
A365543 counts partitions with a submultiset summing to k, strict
A365661.
-
nmz[y_]:=Complement[Range[Total[y]],Total/@Subsets[y]];
Table[Length[Select[IntegerPartitions[n],Length[nmz[#]]>0&]],{n,0,15}]
A301899
Heinz numbers of strict knapsack partitions. Squarefree numbers such that every divisor has a different Heinz weight A056239(d).
Original entry on oeis.org
1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 46, 47, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 71, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 102, 103, 105, 106, 107, 109
Offset: 1
42 is the Heinz number of (4,2,1) which is strict and knapsack, so is in the sequence. 45 is the Heinz number of (3,2,2) which is knapsack but not strict, so is not in the sequence. 30 is the Heinz number of (3,2,1) which is strict but not knapsack, so is not in the sequence.
Sequence of strict knapsack partitions begins: (), (1), (2), (3), (21), (4), (31), (5), (6), (41), (32), (7), (8), (42), (51), (9), (61).
Cf.
A000712,
A005117,
A056239,
A108917,
A112798,
A122768,
A275972,
A276024,
A284640,
A296150,
A299701,
A299702,
A299729,
A301829,
A301854,
A301900.
-
wt[n_]:=If[n===1,0,Total[Cases[FactorInteger[n],{p_,k_}:>k*PrimePi[p]]]];
Select[Range[100],SquareFreeQ[#]&&UnsameQ@@wt/@Divisors[#]&]
A365831
Number of incomplete strict integer partitions of n, meaning not every number from 0 to n is the sum of some submultiset.
Original entry on oeis.org
0, 0, 1, 1, 2, 3, 3, 4, 6, 8, 9, 11, 13, 16, 21, 25, 31, 36, 43, 50, 59, 69, 82, 96, 113, 131, 155, 179, 208, 239, 276, 315, 362, 414, 472, 539, 614, 698, 795, 902, 1023, 1158, 1311, 1479, 1672, 1881, 2118, 2377, 2671, 2991, 3354, 3748, 4194, 4679, 5223, 5815
Offset: 0
The strict partition (14,5,4,2,1) has no subset summing to 13 so is counted under a(26).
The a(2) = 1 through a(10) = 9 strict partitions:
(2) (3) (4) (5) (6) (7) (8) (9) (10)
(3,1) (3,2) (4,2) (4,3) (5,3) (5,4) (6,4)
(4,1) (5,1) (5,2) (6,2) (6,3) (7,3)
(6,1) (7,1) (7,2) (8,2)
(4,3,1) (8,1) (9,1)
(5,2,1) (4,3,2) (5,3,2)
(5,3,1) (5,4,1)
(6,2,1) (6,3,1)
(7,2,1)
A046663 counts partitions w/o a submultiset summing to k, strict
A365663.
A325799 counts non-subset-sums of prime indices.
A365543 counts partitions with a submultiset summing to k, strict
A365661.
-
nmz[y_]:=Complement[Range[Total[y]], Total/@Subsets[y]];
Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&Length[nmz[#]]>0&]],{n,0,15}]
A325683
Number of maximal Golomb rulers of length n.
Original entry on oeis.org
1, 1, 1, 2, 2, 4, 2, 6, 8, 18, 16, 24, 20, 28, 42, 76, 100, 138, 168, 204, 194, 272, 276, 450, 588, 808, 992, 1578, 1612, 1998, 2166, 2680, 2732, 3834, 3910, 5716, 6818, 9450, 10524, 15504, 16640, 22268, 23754, 30430, 31498, 40644, 40294, 52442, 56344, 72972, 77184
Offset: 0
The a(1) = 1 through a(8) = 8 maximal Golomb rulers:
{0,1} {0,2} {0,1,3} {0,1,4} {0,1,5} {0,1,4,6} {0,1,3,7} {0,1,3,8}
{0,2,3} {0,3,4} {0,2,5} {0,2,5,6} {0,1,5,7} {0,1,5,8}
{0,3,5} {0,2,3,7} {0,1,6,8}
{0,4,5} {0,2,6,7} {0,2,3,8}
{0,4,5,7} {0,2,7,8}
{0,4,6,7} {0,3,7,8}
{0,5,6,8}
{0,5,7,8}
The a(1) = 1 through a(10) = 16 minimal compositions:
(1) (2) (12) (13) (14) (132) (124) (125) (126) (127)
(21) (31) (23) (231) (142) (143) (135) (136)
(32) (214) (152) (153) (154)
(41) (241) (215) (162) (163)
(412) (251) (216) (172)
(421) (341) (234) (217)
(512) (243) (253)
(521) (261) (271)
(315) (316)
(324) (352)
(342) (361)
(351) (451)
(423) (613)
(432) (631)
(513) (712)
(531) (721)
(612)
(621)
-
fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)];
Table[Length[fasmax[Accumulate/@Select[Join@@Permutations/@IntegerPartitions[n],UnsameQ@@ReplaceList[#,{_,s__,_}:>Plus[s]]&]]],{n,0,15}]
A338470
Number of integer partitions of n with no part dividing all the others.
Original entry on oeis.org
1, 0, 0, 0, 0, 1, 0, 3, 2, 5, 5, 13, 7, 23, 21, 33, 35, 65, 55, 104, 97, 151, 166, 252, 235, 377, 399, 549, 591, 846, 858, 1237, 1311, 1749, 1934, 2556, 2705, 3659, 3991, 5090, 5608, 7244, 7841, 10086, 11075, 13794, 15420, 19195, 21003, 26240, 29089, 35483
Offset: 0
The a(5) = 1 through a(12) = 7 partitions (empty column indicated by dot):
(32) . (43) (53) (54) (64) (65) (75)
(52) (332) (72) (73) (74) (543)
(322) (432) (433) (83) (552)
(522) (532) (92) (732)
(3222) (3322) (443) (4332)
(533) (5322)
(542) (33222)
(632)
(722)
(3332)
(4322)
(5222)
(32222)
The Heinz numbers of these partitions are
A342193.
The case with maximum part not divisible by all the others is
A343342.
The case with maximum part divisible by all the others is
A343344.
A000070 counts partitions with a selected part.
A001787 count normal multisets with a selected position.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.
A167865 counts strict chains of divisors > 1 summing to n.
A276024 counts positive subset sums.
-
Table[Length[Select[IntegerPartitions[n],#=={}||!And@@IntegerQ/@(#/Min@@#)&]],{n,0,30}]
(* Second program: *)
a[n_] := If[n == 0, 1, PartitionsP[n] - Sum[PartitionsP[d-1], {d, Divisors[n]}]];
a /@ Range[0, 50] (* Jean-François Alcover, May 09 2021, after Andrew Howroyd *)
-
a(n)={numbpart(n) - if(n, sumdiv(n, d, numbpart(d-1)))} \\ Andrew Howroyd, Mar 25 2021
A365925
Number of subset-sums of strict integer partitions of n.
Original entry on oeis.org
1, 2, 2, 6, 6, 10, 17, 22, 29, 42, 59, 74, 102, 130, 171, 226, 281, 356, 454, 566, 699, 896, 1080, 1342, 1637, 2006, 2413, 2962, 3548, 4286, 5114, 6148, 7272, 8738, 10268, 12224, 14387, 16996, 19863, 23450, 27257, 31984, 37187, 43364, 50173, 58428, 67322
Offset: 0
The a(6) = 17 ways, showing each strict partition and its subset-sums:
(6): 0,6
(51): 0,1,5,6
(42): 0,2,4,6
(321): 0,1,2,3,4,5,6
A365830
Heinz numbers of incomplete integer partitions, meaning not every number from 0 to A056239(n) is the sum of some submultiset.
Original entry on oeis.org
3, 5, 7, 9, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25, 26, 27, 28, 29, 31, 33, 34, 35, 37, 38, 39, 41, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89
Offset: 1
The terms together with their prime indices begin:
3: {2}
5: {3}
7: {4}
9: {2,2}
10: {1,3}
11: {5}
13: {6}
14: {1,4}
15: {2,3}
17: {7}
19: {8}
21: {2,4}
22: {1,5}
23: {9}
25: {3,3}
26: {1,6}
27: {2,2,2}
28: {1,1,4}
For example, the submultisets of (1,1,2,6) (right column) and their sums (left column) are:
0: ()
1: (1)
2: (2) or (11)
3: (12)
4: (112)
6: (6)
7: (16)
8: (26) or (116)
9: (126)
10: (1126)
But 5 is missing, so 156 is in the sequence.
For prime indices instead of sums we have
A080259, complement of
A055932.
A299701 counts distinct subset-sums of prime indices.
A365918 counts distinct non-subset-sums of partitions, strict
A365922.
A365923 counts partitions by distinct non-subset-sums, strict
A365545.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
nmz[y_]:=Complement[Range[Total[y]],Total/@Subsets[y]];
Select[Range[100],Length[nmz[prix[#]]]>0&]
Comments