A367403
Number of integer partitions of n whose semi-sums do not cover an interval of positive integers.
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 2, 5, 9, 13, 22, 30, 46, 63, 91, 118, 167, 216, 290, 374, 490, 626, 810, 1022, 1297, 1628, 2051, 2551, 3176, 3929, 4845, 5963, 7311, 8932, 10892, 13227, 16035, 19395, 23397, 28156, 33803, 40523, 48439, 57832, 68876, 81903, 97212, 115198
Offset: 0
The a(0) = 0 through a(9) = 13 partitions:
. . . . . (311) (411) (331) (422) (441)
(3111) (421) (431) (522)
(511) (521) (531)
(4111) (611) (621)
(31111) (3311) (711)
(4211) (4311)
(5111) (5211)
(41111) (6111)
(311111) (33111)
(42111)
(51111)
(411111)
(3111111)
The complement is counted by
A367402.
A000009 counts partitions covering an initial interval, ranks
A055932.
A086971 counts semi-sums of prime indices.
A261036 counts complete partitions by maximum.
-
Table[Length[Select[IntegerPartitions[n], (d=Total/@Subsets[#,{2}];If[d=={}, {}, Range[Min@@d,Max@@d]]!=Union[d])&]], {n,0,15}]
A367410
Number of strict integer partitions of n whose semi-sums cover an interval of positive integers.
Original entry on oeis.org
1, 1, 1, 2, 2, 3, 4, 4, 4, 6, 6, 7, 7, 8, 8, 11, 9, 11, 11, 12, 12, 15, 14, 15, 16, 16, 16, 19, 18, 19, 22, 21, 21, 24, 22, 25, 26, 26, 26, 30, 28, 29, 32, 31, 32, 37, 35, 36, 38, 39, 39, 43, 42, 43, 47, 46, 49, 51, 52, 51, 58
Offset: 0
The partition y = (4,2,1) has semi-sums {3,5,6} which are missing 4, so y is not counted under a(7).
The a(1) = 1 through a(9) = 6 partitions:
(1) (2) (3) (4) (5) (6) (7) (8) (9)
(2,1) (3,1) (3,2) (4,2) (4,3) (5,3) (5,4)
(4,1) (5,1) (5,2) (6,2) (6,3)
(3,2,1) (6,1) (7,1) (7,2)
(8,1)
(4,3,2)
For parts instead of sums we have
A001227:
The non-strict complement is
A367403.
The complement is counted by
A367411.
A000009 counts partitions covering an initial interval, ranks
A055932.
A046663 counts partitions w/o submultiset summing to k, strict
A365663.
A365543 counts partitions w/ submultiset summing to k, strict
A365661.
-
Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&(d=Total/@Subsets[#,{2}]; If[d=={},{}, Range[Min@@d, Max@@d]]==Union[d])&]], {n,0,30}]
A367411
Number of strict integer partitions of n whose semi-sums do not cover an interval of positive integers.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 4, 5, 8, 10, 14, 16, 23, 27, 35, 42, 52, 61, 75, 89, 106, 126, 149, 173, 204, 237, 274, 319, 369, 424, 490, 560, 642, 734, 838, 952, 1085, 1231, 1394, 1579, 1784, 2011, 2269, 2554, 2872, 3225, 3619, 4054, 4540, 5077, 5671, 6332
Offset: 0
The partition y = (4,2,1) has semi-sums {3,5,6} which are missing 4, so y is counted under a(7).
The a(7) = 1 through a(13) = 10 partitions:
(4,2,1) (4,3,1) (5,3,1) (5,3,2) (5,4,2) (6,4,2) (6,4,3)
(5,2,1) (6,2,1) (5,4,1) (6,3,2) (6,5,1) (6,5,2)
(6,3,1) (6,4,1) (7,3,2) (7,4,2)
(7,2,1) (7,3,1) (7,4,1) (7,5,1)
(8,2,1) (8,3,1) (8,3,2)
(9,2,1) (8,4,1)
(5,4,2,1) (9,3,1)
(6,3,2,1) (10,2,1)
(6,4,2,1)
(7,3,2,1)
For parts instead of sums we have
A238007:
The non-strict complement is
A367402.
The complement is counted by
A367410.
A000009 counts partitions covering an initial interval, ranks
A055932.
A046663 counts partitions w/o submultiset summing to k, strict
A365663.
A365543 counts partitions w/ submultiset summing to k, strict
A365661.
-
Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&(d=Total/@Subsets[#, {2}];If[d=={},{}, Range[Min@@d,Max@@d]]!=Union[d])&]], {n,0,30}]
A301934
Number of positive subset-sum trees of weight n.
Original entry on oeis.org
1, 3, 14, 85, 586, 4331, 33545, 268521, 2204249
Offset: 1
The a(3) = 14 positive subset-sum trees:
3 3(1,2) 3(1,1,1) 3(1,2(1,1))
2(1,2) 2(1,1,1) 2(1,1(1,1)) 2(1(1,1),1) 2(1,2(1,1))
1(1,2) 1(1,1,1) 1(1,1(1,1)) 1(1(1,1),1) 1(1,2(1,1))
Cf.
A000108,
A000712,
A108917,
A122768,
A262671,
A262673,
A275972,
A276024,
A284640,
A299701,
A301854,
A301855,
A301856,
A301935.
A307699
Numbers k such that there is no integer partition of k with exactly k-1 submultisets.
Original entry on oeis.org
0, 1, 2, 6, 8, 12, 14, 18, 20, 24, 26, 30, 32, 38, 42, 44, 48, 50, 54, 60, 62, 66, 68, 72, 74, 80, 84, 86, 90, 92, 98, 102, 104, 108, 110, 114, 122, 126, 128, 132, 134, 138, 140, 146, 150, 152, 158, 164, 168, 170, 174, 180, 182, 186, 192, 194, 198, 200, 206
Offset: 1
The sequence of positive terms together with their prime indices begins:
1: {}
2: {1}
6: {1,2}
8: {1,1,1}
12: {1,1,2}
14: {1,4}
18: {1,2,2}
20: {1,1,3}
24: {1,1,1,2}
26: {1,6}
30: {1,2,3}
32: {1,1,1,1,1}
38: {1,8}
42: {1,2,4}
44: {1,1,5}
48: {1,1,1,1,2}
50: {1,3,3}
54: {1,2,2,2}
60: {1,1,2,3}
Partitions realizing the desired number of submultisets for each non-term are:
3: (3)
4: (22)
5: (41)
7: (511)
9: (621)
10: (4411)
11: (71111)
13: (9211)
15: (9111111)
16: (661111)
17: (9521)
19: (94411)
21: (981111)
22: (88111111)
23: (32222222222)
25: (99421)
27: (3222222222222)
28: (994411)
29: (98222222)
Cf.
A002033,
A088880,
A088881,
A098859,
A108917,
A126796,
A276024,
A325694,
A325792,
A325798,
A325828,
A325830,
A325833,
A325834,
A325835.
A326035
Number of uniform knapsack partitions of n.
Original entry on oeis.org
1, 1, 2, 3, 4, 4, 6, 6, 9, 10, 12, 12, 17, 16, 20, 25, 27, 29, 35, 39, 44, 57, 53, 66, 75, 84, 84, 114, 112, 131, 133, 162, 167, 209, 192, 242, 250, 289, 279, 363, 348, 417, 404, 502, 487, 608, 557, 706, 682, 835, 773, 1004, 922, 1149, 1059, 1344, 1257, 1595
Offset: 0
The a(1) = 1 through a(8) = 9 partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (21) (22) (32) (33) (43) (44)
(111) (31) (41) (42) (52) (53)
(1111) (11111) (51) (61) (62)
(222) (421) (71)
(111111) (1111111) (521)
(2222)
(3311)
(11111111)
-
sums[ptn_]:=sums[ptn]=If[Length[ptn]==1,ptn,Union@@(Join[sums[#],sums[#]+Total[ptn]-Total[#]]&/@Union[Table[Delete[ptn,i],{i,Length[ptn]}]])];
ks[n_]:=Select[IntegerPartitions[n],Length[sums[Sort[#]]]==Times@@(Length/@Split[#]+1)-1&];
Table[Length[Select[ks[n],SameQ@@Length/@Split[#]&]],{n,30}]
A347707
Number of distinct possible integer reverse-alternating products of integer partitions of n.
Original entry on oeis.org
1, 1, 2, 2, 3, 3, 4, 5, 5, 6, 6, 8, 8, 9, 9, 11, 11, 13, 12, 14, 14, 15, 15, 18, 17, 19, 18, 20, 20, 22, 21, 25, 23, 26, 25, 28, 26, 29, 27, 31, 29, 32, 31, 34, 33, 35, 34, 38, 35, 41, 37, 42, 40, 43, 41, 45, 42, 46, 44, 48, 45, 50, 46, 52, 49, 53
Offset: 0
Representative partitions for each of the a(16) = 11 alternating products:
(16) -> 16
(14,1,1) -> 14
(12,2,2) -> 12
(10,3,3) -> 10
(8,4,4) -> 8
(9,3,2,1,1) -> 6
(10,4,2) -> 5
(12,3,1) -> 4
(6,4,2,2,2) -> 3
(10,5,1) -> 2
(8,8) -> 1
The even-length version is
A000035.
The non-reverse version is
A028310.
The version for factorizations has special cases:
- non-reverse non-integer odd-length:
A347708
The odd-length version is a(n) -
A059841(n).
A027187 counts partitions of even length.
A027193 counts partitions of odd length.
A103919 counts partitions by sum and alternating sum, reverse
A344612.
A119620 counts partitions with alternating product 1, ranked by
A028982.
A276024 counts distinct positive subset-sums of partitions, strict
A284640.
A304792 counts distinct subset-sums of partitions.
A345926 counts possible alternating sums of permutations of prime indices.
Cf.
A000070,
A002033,
A002219,
A108917,
A122768,
A325765,
A344654,
A344740,
A347443,
A347444,
A347448,
A347449.
-
revaltprod[q_]:=Product[Reverse[q][[i]]^(-1)^(i-1),{i,Length[q]}];
Table[Length[Select[Union[revaltprod/@IntegerPartitions[n]],IntegerQ]],{n,0,30}]
A304796
Number of special sums of integer partitions of n.
Original entry on oeis.org
1, 2, 5, 10, 18, 32, 51, 82, 122, 188, 262, 392, 529, 750, 997, 1404, 1784, 2452, 3123, 4164, 5239, 6916, 8499, 11112, 13693, 17482, 21257, 27162, 32581, 41114, 49606, 61418, 73474, 91086, 107780, 132874, 157359, 191026, 225159, 274110, 320691, 386722, 453875
Offset: 0
The a(4) = 18 special positive subset-sums:
0<=(4), 4<=(4),
0<=(22), 2<=(22), 4<=(22),
0<=(31), 1<=(31), 3<=(31), 4<=(31),
0<=(211), 1<=(211), 3<=(211), 4<=(211),
0<=(1111), 1<=(1111), 2<=(1111), 3<=(1111), 4<=(1111).
Cf.
A000712,
A108917,
A122768,
A275972,
A276024,
A284640,
A299701,
A299702,
A299729,
A301829,
A301830,
A301854.
-
uqsubs[y_]:=Join@@Select[GatherBy[Union[Subsets[y]],Total],Length[#]===1&];
Table[Total[Length/@uqsubs/@IntegerPartitions[n]],{n,25}]
A316222
Number of positive subset-sum triangles whose composite is a positive subset-sum of an integer partition of n.
Original entry on oeis.org
1, 5, 20, 74, 258, 855, 2736, 8447
Offset: 1
We write positive subset-sum triangles in the form rootsum(branch,...,branch). The a(2) = 5 positive subset-sum triangles:
2(2(2))
1(1(1,1))
2(2(1,1))
1(1(1),1(1))
2(1(1),1(1))
A316399
Number of strict integer partitions of n such that not every subset has a different average.
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 0, 0, 2, 1, 1, 5, 3, 5, 9, 10, 10, 20, 20, 27, 32, 39, 43, 69, 65, 83, 99, 133, 136, 176, 191, 252, 274, 332, 363, 475, 503, 602, 677, 832, 893, 1067, 1186, 1418, 1561, 1797, 2000, 2384, 2602, 2992, 3315, 3853, 4226, 4826, 5383, 6121, 6763
Offset: 1
The a(12) = 5 partitions are (5,4,3), (6,4,2), (7,4,1), (5,4,2,1), (6,3,2,1).
Cf.
A000009,
A108917,
A275972,
A276024,
A284640,
A299702,
A301899,
A301900,
A316271,
A316313,
A316314,
A316400,
A316402.
Comments