A369649 Numbers k in A276156 (sums of distinct primorial numbers) where the maximal exponent in the prime factorization of k attains a novel value.
1, 2, 8, 9, 32, 240, 30272, 510720, 223635968, 6469693440, 6470203776, 200560520192, 200793823232, 304250487160832, 13082767811575808, 13090182069805056, 32602248665739755520, 1955964710091685625856, 117289009331951114780672, 557940862715864858896105472, 558058119122955571275235328, 40729680631838190048559235072
Offset: 1
Keywords
Examples
k factorization max.exp A049345(k) 1 0 1 2 = 2^1, 1, 10 8 = 2^3, 3, 110 9 = 3^2, 2, 111 32 = 2^5, 5, 1010 240 = 2^4 * 3 * 5, 4, 11000 30272 = 2^6 * 11 * 43, 6, 1011010 510720 = 2^8 * 3 * 5 * 7 * 19, 8, 10010000 223635968 = 2^9 * 577 * 757, 9, 1011111110 6469693440 = 2^12 * 3 * 5 * 7^3 * 307, 12, 10000010000 6470203776 = 2^7 * 3 * 1151 * 14639, 7, 10010001100 200560520192 = 2^10 * 43 * 4554881, 10, 100001001010 200793823232 = 2^11 * 98043859, 11, 101111000010 304250487160832 = 2^14 * 113 * 164336071, 14, 10001011010010 13082767811575808 = 2^15 * 167 * 2390744843, 15, 100010110101110 13090182069805056 = 2^13 * 3^4 * 5939 * 3321677, 13, 101000000010100. Max. exp. column, which is equal to A051903(k) is most probably a permutation of nonnegative integers. Note that the last column is equal to A007088(A369648(n)).
Comments