cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 54 results. Next

A369649 Numbers k in A276156 (sums of distinct primorial numbers) where the maximal exponent in the prime factorization of k attains a novel value.

Original entry on oeis.org

1, 2, 8, 9, 32, 240, 30272, 510720, 223635968, 6469693440, 6470203776, 200560520192, 200793823232, 304250487160832, 13082767811575808, 13090182069805056, 32602248665739755520, 1955964710091685625856, 117289009331951114780672, 557940862715864858896105472, 558058119122955571275235328, 40729680631838190048559235072
Offset: 1

Views

Author

Antti Karttunen, Feb 03 2024

Keywords

Examples

			                  k   factorization               max.exp         A049345(k)
                  1                                  0                 1
                  2 = 2^1,                           1,               10
                  8 = 2^3,                           3,              110
                  9 = 3^2,                           2,              111
                 32 = 2^5,                           5,             1010
                240 = 2^4 * 3 * 5,                   4,            11000
              30272 = 2^6 * 11 * 43,                 6,          1011010
             510720 = 2^8 * 3 * 5 * 7 * 19,          8,         10010000
          223635968 = 2^9 * 577 * 757,               9,       1011111110
         6469693440 = 2^12 * 3 * 5 * 7^3 * 307,     12,      10000010000
         6470203776 = 2^7 * 3 * 1151 * 14639,        7,      10010001100
       200560520192 = 2^10 * 43 * 4554881,          10,     100001001010
       200793823232 = 2^11 * 98043859,              11,     101111000010
    304250487160832 = 2^14 * 113 * 164336071,       14,   10001011010010
  13082767811575808 = 2^15 * 167 * 2390744843,      15,  100010110101110
  13090182069805056 = 2^13 * 3^4 * 5939 * 3321677,  13,  101000000010100.
Max. exp. column, which is equal to A051903(k) is most probably a permutation of nonnegative integers.
Note that the last column is equal to A007088(A369648(n)).
		

Crossrefs

Formula

a(n) = A276156(A369648(n)).

A328465 Row 2 of A328464: a(n) = A276156(4n - 2) / 2.

Original entry on oeis.org

1, 4, 16, 19, 106, 109, 121, 124, 1156, 1159, 1171, 1174, 1261, 1264, 1276, 1279, 15016, 15019, 15031, 15034, 15121, 15124, 15136, 15139, 16171, 16174, 16186, 16189, 16276, 16279, 16291, 16294, 255256, 255259, 255271, 255274, 255361, 255364, 255376, 255379, 256411, 256414, 256426, 256429, 256516, 256519, 256531
Offset: 1

Views

Author

Antti Karttunen, Oct 18 2019

Keywords

Crossrefs

Programs

  • PARI
    A002110(n) = prod(i=1,n,prime(i));
    A276156(n) = { my(p=2,pr=1,s=0); while(n,if(n%2,s += pr); n >>= 1; pr *= p; p = nextprime(1+p)); (s); };
    A328465(n) = (A276156((4*n)-2) / 2);

Formula

a(n) = (1/2) * A276156(4*n - 2).

A276086 Primorial base exp-function: digits in primorial base representation of n become the exponents of successive prime factors whose product a(n) is.

Original entry on oeis.org

1, 2, 3, 6, 9, 18, 5, 10, 15, 30, 45, 90, 25, 50, 75, 150, 225, 450, 125, 250, 375, 750, 1125, 2250, 625, 1250, 1875, 3750, 5625, 11250, 7, 14, 21, 42, 63, 126, 35, 70, 105, 210, 315, 630, 175, 350, 525, 1050, 1575, 3150, 875, 1750, 2625, 5250, 7875, 15750, 4375, 8750, 13125, 26250, 39375, 78750, 49, 98, 147, 294, 441, 882, 245, 490, 735, 1470, 2205, 4410, 1225, 2450
Offset: 0

Views

Author

Antti Karttunen, Aug 21 2016

Keywords

Comments

Prime product form of primorial base expansion of n.
Sequence is a permutation of A048103. It maps the smallest prime not dividing n to the smallest prime dividing n, that is, A020639(a(n)) = A053669(n) holds for all n >= 1.
The sequence satisfies the exponential function identity, a(x + y) = a(x) * a(y), whenever A329041(x,y) = 1, that is, when adding x and y together will not generate any carries in the primorial base. Examples of such pairs of x and y are A328841(n) & A328842(n), and also A328770(n) (when added with itself). - Antti Karttunen, Oct 31 2019
From Antti Karttunen, Feb 18 2022: (Start)
The conjecture given in A327969 asks whether applying this function together with the arithmetic derivative (A003415) in some combination or another can eventually transform every positive integer into zero.
Another related open question asks whether there are any other numbers than n=6 such that when starting from that n and by iterating with A003415, one eventually reaches a(n). See comments in A351088.
This sequence is used in A351255 to list the terms of A099308 in a different order, by the increasing exponents of the successive primes in their prime factorization. (End)
From Bill McEachen, Oct 15 2022: (Start)
From inspection, the least significant decimal digits of a(n) terms form continuous chains of 30 as follows. For n == i (mod 30), i=0..5, there are 6 ordered elements of these 8 {1,2,3,6,9,8,7,4}. Then for n == i (mod 30), i=6..29, there are 12 repeated pairs = {5,0}.
Moreover, when the individual elements of any of the possible groups of 6 are transformed via (7*digit) (mod 10), the result matches one of the other 7 groupings (not all 7 may be seen). As example, {1,2,3,6,9,8} transforms to {7,4,1,2,3,6}. (End)
The least significant digit of a(n) in base 4 is given by A353486, and in base 6 by A358840. - Antti Karttunen, Oct 25 2022, Feb 17 2024

Examples

			For n = 24, which has primorial base representation (see A049345) "400" as 24 = 4*A002110(2) + 0*A002110(1) + 0*A002110(0) = 4*6 + 0*2 + 0*1, thus a(24) = prime(3)^4 * prime(2)^0 * prime(1)^0 = 5^4 = 625.
For n = 35 = "1021" as 35 = 1*A002110(3) + 0*A002110(2) + 2*A002110(1) + 1*A002110(0) = 1*30 + 0*6 + 2*2 + 1*1, thus a(35) = prime(4)^1 * prime(2)^2 * prime(1) = 7 * 3*3 * 2 = 126.
		

Crossrefs

Cf. A276085 (a left inverse) and also A276087, A328403.
Cf. A048103 (terms sorted into ascending order), A100716 (natural numbers not present in this sequence).
Cf. A278226 (associated filter-sequence), A286626 (and its rgs-version), A328477.
Cf. A328316 (iterates started from zero).
Cf. A327858, A327859, A327860, A327963, A328097, A328098, A328099, A328110, A328112, A328382 for various combinations with arithmetic derivative (A003415).
Cf. also A327167, A329037.
Cf. A019565 and A054842 for base-2 and base-10 analogs and A276076 for the analogous "factorial base exp-function", from which this differs for the first time at n=24, where a(24)=625 while A276076(24)=7.
Cf. A327969, A351088, A351458 for sequences with conjectures involving this sequence.

Programs

  • Mathematica
    b = MixedRadix[Reverse@ Prime@ Range@ 12]; Table[Function[k, Times @@ Power @@@ # &@ Transpose@ {Prime@ Range@ Length@ k, Reverse@ k}]@ IntegerDigits[n, b], {n, 0, 51}] (* Michael De Vlieger, Aug 23 2016, Version 10.2 *)
    f[n_] := Block[{a = {{0, n}}}, Do[AppendTo[a, {First@ #, Last@ #} &@ QuotientRemainder[a[[-1, -1]], Times @@ Prime@ Range[# - i]]], {i, 0, #}] &@ NestWhile[# + 1 &, 0, Times @@ Prime@ Range[# + 1] <= n &]; Rest[a][[All, 1]]]; Table[Times @@ Flatten@ MapIndexed[Prime[#2]^#1 &, Reverse@ f@ n], {n, 0, 73}] (* Michael De Vlieger, Aug 30 2016, Pre-Version 10 *)
    a[n0_] := Module[{m = 1, i = 1, n = n0, p}, While[n > 0, p = Prime[i]; m *= p^Mod[n, p]; n = Quotient[n, p]; i++]; m];
    Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Dec 01 2021, after Antti Karttunen's Sage code *)
  • PARI
    A276086(n) = { my(i=0,m=1,pr=1,nextpr); while((n>0),i=i+1; nextpr = prime(i)*pr; if((n%nextpr),m*=(prime(i)^((n%nextpr)/pr));n-=(n%nextpr));pr=nextpr); m; }; \\ Antti Karttunen, May 12 2017
    
  • PARI
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); }; \\ (Better than above one, avoids unnecessary construction of primorials). - Antti Karttunen, Oct 14 2019
    
  • Python
    from sympy import prime
    def a(n):
        i=0
        m=pr=1
        while n>0:
            i+=1
            N=prime(i)*pr
            if n%N!=0:
                m*=(prime(i)**((n%N)/pr))
                n-=n%N
            pr=N
        return m # Indranil Ghosh, May 12 2017, after Antti Karttunen's PARI code
    
  • Python
    from sympy import nextprime
    def a(n):
        m, p = 1, 2
        while n > 0:
            n, r = divmod(n, p)
            m *= p**r
            p = nextprime(p)
        return m
    print([a(n) for n in range(74)])  # Peter Luschny, Apr 20 2024
  • Sage
    def A276086(n):
        m=1
        i=1
        while n>0:
            p = sloane.A000040(i)
            m *= (p**(n%p))
            n = floor(n/p)
            i += 1
        return (m)
    # Antti Karttunen, Oct 14 2019, after Indranil Ghosh's Python code above, and my own leaner PARI code from Oct 14 2019. This avoids unnecessary construction of primorials.
    
  • Scheme
    (define (A276086 n) (let loop ((n n) (t 1) (i 1)) (if (zero? n) t (let* ((p (A000040 i)) (d (modulo n p))) (loop (/ (- n d) p) (* t (expt p d)) (+ 1 i))))))
    
  • Scheme
    (definec (A276086 n) (if (zero? n) 1 (* (expt (A053669 n) (A276088 n)) (A276086 (A276093 n))))) ;; Needs macro definec from http://oeis.org/wiki/Memoization#Scheme
    
  • Scheme
    (definec (A276086 n) (if (zero? n) 1 (* (A053669 n) (A276086 (- n (A002110 (A276084 n))))))) ;; Needs macro definec from http://oeis.org/wiki/Memoization#Scheme
    

Formula

a(0) = 1; for n >= 1, a(n) = A053669(n) * a(A276151(n)) = A053669(n) * a(n-A002110(A276084(n))).
a(0) = 1; for n >= 1, a(n) = A053669(n)^A276088(n) * a(A276093(n)).
a(n) = A328841(a(n)) + A328842(a(n)) = A328843(n) + A328844(n).
a(n) = a(A328841(n)) * a(A328842(n)) = A328571(n) * A328572(n).
a(n) = A328475(n) * A328580(n) = A328476(n) + A328580(n).
a(A002110(n)) = A000040(n+1). [Maps primorials to primes]
a(A143293(n)) = A002110(n+1). [Maps partial sums of primorials to primorials]
a(A057588(n)) = A276092(n).
a(A276156(n)) = A019565(n).
a(A283477(n)) = A324289(n).
a(A003415(n)) = A327859(n).
Here the text in brackets shows how the right hand side sequence is a function of the primorial base expansion of n:
A001221(a(n)) = A267263(n). [Number of nonzero digits]
A001222(a(n)) = A276150(n). [Sum of digits]
A067029(a(n)) = A276088(n). [The least significant nonzero digit]
A071178(a(n)) = A276153(n). [The most significant digit]
A061395(a(n)) = A235224(n). [Number of significant digits]
A051903(a(n)) = A328114(n). [Largest digit]
A055396(a(n)) = A257993(n). [Number of trailing zeros + 1]
A257993(a(n)) = A328570(n). [Index of the least significant zero digit]
A079067(a(n)) = A328620(n). [Number of nonleading zeros]
A056169(a(n)) = A328614(n). [Number of 1-digits]
A056170(a(n)) = A328615(n). [Number of digits larger than 1]
A277885(a(n)) = A328828(n). [Index of the least significant digit > 1]
A134193(a(n)) = A329028(n). [The least missing nonzero digit]
A005361(a(n)) = A328581(n). [Product of nonzero digits]
A072411(a(n)) = A328582(n). [LCM of nonzero digits]
A001055(a(n)) = A317836(n). [Number of carry-free partitions of n in primorial base]
Various number theoretical functions applied:
A000005(a(n)) = A324655(n). [Number of divisors of a(n)]
A000203(a(n)) = A324653(n). [Sum of divisors of a(n)]
A000010(a(n)) = A324650(n). [Euler phi applied to a(n)]
A023900(a(n)) = A328583(n). [Dirichlet inverse of Euler phi applied to a(n)]
A069359(a(n)) = A329029(n). [Sum a(n)/p over primes p dividing a(n)]
A003415(a(n)) = A327860(n). [Arithmetic derivative of a(n)]
Other identities:
A276085(a(n)) = n. [A276085 is a left inverse]
A020639(a(n)) = A053669(n). [The smallest prime not dividing n -> the smallest prime dividing n]
A046523(a(n)) = A278226(n). [Least number with the same prime signature as a(n)]
A246277(a(n)) = A329038(n).
A181819(a(n)) = A328835(n).
A053669(a(n)) = A326810(n), A326810(a(n)) = A328579(n).
A257993(a(n)) = A328570(n), A328570(a(n)) = A328578(n).
A328613(a(n)) = A328763(n), A328620(a(n)) = A328766(n).
A328828(a(n)) = A328829(n).
A053589(a(n)) = A328580(n). [Greatest primorial number which divides a(n)]
A276151(a(n)) = A328476(n). [... and that primorial subtracted from a(n)]
A111701(a(n)) = A328475(n).
A328114(a(n)) = A328389(n). [Greatest digit of primorial base expansion of a(n)]
A328389(a(n)) = A328394(n), A328394(a(n)) = A328398(n).
A235224(a(n)) = A328404(n), A328405(a(n)) = A328406(n).
a(A328625(n)) = A328624(n), a(A328626(n)) = A328627(n). ["Twisted" variants]
a(A108951(n)) = A324886(n).
a(n) mod n = A328386(n).
a(a(n)) = A276087(n), a(a(a(n))) = A328403(n). [2- and 3-fold applications]
a(2n+1) = 2 * a(2n). - Antti Karttunen, Feb 17 2022

Extensions

Name edited and new link-formulas added by Antti Karttunen, Oct 29 2019
Name changed again by Antti Karttunen, Feb 05 2022

A327860 Arithmetic derivative of the primorial base exp-function: a(n) = A003415(A276086(n)).

Original entry on oeis.org

0, 1, 1, 5, 6, 21, 1, 7, 8, 31, 39, 123, 10, 45, 55, 185, 240, 705, 75, 275, 350, 1075, 1425, 3975, 500, 1625, 2125, 6125, 8250, 22125, 1, 9, 10, 41, 51, 165, 12, 59, 71, 247, 318, 951, 95, 365, 460, 1445, 1905, 5385, 650, 2175, 2825, 8275, 11100, 30075, 4125, 12625, 16750, 46625, 63375, 166125, 14, 77, 91, 329, 420
Offset: 0

Views

Author

Antti Karttunen, Sep 30 2019

Keywords

Comments

Are there any other fixed points after 0, 1, 7, 8 and 2556? (A328110, see also A351087 and A351088).
Out of the 30030 initial terms, 19220 are multiples of 5. (See A327865).
Proof that a(n) is even if and only if n is a multiple of 4: Consider Charlie Neder's Feb 25 2019 comment in A235992. As A276086 is never a multiple of 4, and as it toggles the parity, we only need to know when A001222(A276086(n)) = A276150(n) is even. The condition for that is given in the latter sequence by David A. Corneth's Feb 27 2019 comment. From this it also follows that A166486 gives similarly the parity of terms of A342002, A351083 and A345000. See also comment in A327858. - Antti Karttunen, May 01 2022

Examples

			2556 has primorial base expansion [1,1,1,1,0,0] as 1*A002110(5) + 1*A002110(4) + 1*A002110(3) + 1*A002110(2) = 2310 + 210 + 30 + 6 = 2556. That in turn is converted by A276086 to 13^1 * 11^1 * 7^1 * 5^1 = 5005, whose arithmetic derivative is 5' * 1001 + 1001' * 5 = 1*1001 + 311*5 = 2556, thus 2556 is one of the rare fixed points (A328110) of this sequence.
		

Crossrefs

Cf. A002110 (positions of 1's), A003415, A048103, A276086, A327858, A327859, A327865, A328110 (fixed points), A328233 (positions of primes), A328242 (positions of squarefree terms), A328388, A328392, A328571, A328572, A329031, A329032, A329041, A342002.
Cf. A345000, A351074, A351075, A351076, A351077, A351080, A351083, A351084, A351087 (numbers k such that a(k) is a multiple of k), A351088.
Coincides with A329029 on positions given by A276156.
Cf. A166486 (a(n) mod 2), A353630 (a(n) mod 4).
Cf. A267263, A276150, A324650, A324653, A324655 for omega, bigomega, phi, sigma and tau applied to A276086(n).
Cf. also A351950 (analogous sequence).

Programs

  • Mathematica
    Block[{b = MixedRadix[Reverse@ Prime@ Range@ 12]}, Array[Function[k, If[# < 2, 0, # Total[#2/#1 & @@@ FactorInteger[#]] ] &@ Abs[Times @@ Power @@@ # &@ Transpose@{Prime@ Range@ Length@ k, Reverse@ k}]]@ IntegerDigits[#, b] &, 65, 0]] (* Michael De Vlieger, Mar 12 2021 *)
  • PARI
    A003415(n) = {my(fac); if(n<1, 0, fac=factor(n); sum(i=1, matsize(fac)[1], n*fac[i, 2]/fac[i, 1]))}; \\ From A003415
    A276086(n) = { my(i=0,m=1,pr=1,nextpr); while((n>0),i=i+1; nextpr = prime(i)*pr; if((n%nextpr),m*=(prime(i)^((n%nextpr)/pr));n-=(n%nextpr));pr=nextpr); m; };
    A327860(n) = A003415(A276086(n));
    
  • PARI
    A327860(n) = { my(s=0, m=1, p=2, e); while(n, e = (n%p); m *= (p^e); s += (e/p); n = n\p; p = nextprime(1+p)); (s*m); }; \\ (Standalone version) - Antti Karttunen, Nov 07 2019

Formula

a(n) = A003415(A276086(n)).
a(A002110(n)) = 1 for all n >= 0.
From Antti Karttunen, Nov 03 2019: (Start)
Whenever A329041(x,y) = 1, a(x + y) = A003415(A276086(x)*A276086(y)) = a(x)*A276086(y) + a(y)*A276086(x). For example, we have:
a(n) = a(A328841(n)+A328842(n)) = A329031(n)*A328572(n) + A329032(n)*A328571(n).
A051903(a(n)) = A328391(n).
A328114(a(n)) = A328392(n).
(End)
From Antti Karttunen, May 01 2022: (Start)
a(n) = A328572(n) * A342002(n).
For all n >= 0, A000035(a(n)) = A166486(n). [See comments]
(End)

Extensions

Verbal description added to the definition by Antti Karttunen, May 01 2022

A328114 Maximal digit value used when n is written in primorial base (cf. A049345).

Original entry on oeis.org

0, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
Offset: 0

Views

Author

Antti Karttunen, Oct 12 2019

Keywords

Examples

			For n = 2105, which could be expressed in primorial base for example as "T0021" (where T here stands for the digit value ten), or maybe more elegantly as [10,0,0,2,1] as 2105 = 10*A002110(4) + 2*A002110(1) + 1*A002110(0). The maximum value of these digits is 10, thus a(2105) = 10.
		

Crossrefs

Programs

  • Mathematica
    With[{b = MixedRadix[Reverse@ Prime@ Range@ 20]}, Array[Max@ IntegerDigits[#, b] &, 105, 0]] (* Michael De Vlieger, Oct 30 2019 *)
  • PARI
    A328114(n) = { my(i=0,m=0,pr=1,nextpr); while((n>0),i=i+1; nextpr = prime(i)*pr; if((n%nextpr),m = max(m,(n%nextpr)/pr); n-=(n%nextpr));pr=nextpr); (m); };
    
  • PARI
    A328114(n) = { my(s=0, p=2); while(n, s = max(s,(n%p)); n = n\p; p = nextprime(1+p)); (s); }; \\ (Faster, no unnecessary construction of primorials) - Antti Karttunen, Oct 29 2019

Formula

a(n) = A051903(A276086(n)).
a(A276156(n)) = 1 for all n >= 1.
a(n) <= A276150(n) for all n >= 0.
From Antti Karttunen, Oct 29 2019: (Start)
a(n) = A061395(A328835(n)).
For n >= 1, a(n) < A000040(A235224(n)) and a(n) <= 1 + A328391(n).
For all n >= 1, a(n) = 1+A051903(A328572(n)).
a(A276086(n)) = A328389(n), a(A276087(n)) = A328394(n), a(A328403(n)) = A328398(n).
a(A327860(n)) = A328392(n), a(A003415(n)) = A328390(n), a(A328316(n)) = A328322(n).
(End)

A342002 Čiurlionis sequence: Arithmetic derivative without its inherited divisor applied to the primorial base exp-function: a(n) = A342001(A276086(n)).

Original entry on oeis.org

0, 1, 1, 5, 2, 7, 1, 7, 8, 31, 13, 41, 2, 9, 11, 37, 16, 47, 3, 11, 14, 43, 19, 53, 4, 13, 17, 49, 22, 59, 1, 9, 10, 41, 17, 55, 12, 59, 71, 247, 106, 317, 19, 73, 92, 289, 127, 359, 26, 87, 113, 331, 148, 401, 33, 101, 134, 373, 169, 443, 2, 11, 13, 47, 20, 61, 17, 69, 86, 277, 121, 347, 24, 83, 107, 319, 142, 389, 31
Offset: 0

Views

Author

Antti Karttunen, Feb 28 2021

Keywords

Comments

The scatter plot shows an interesting structure.
The terms are essentially the "wild" or "unherited" part of the arithmetic derivative (A003415) of those natural numbers (A048103) that are not immediately beyond all hope of reaching zero by iteration (as the terms of A100716 are), ordered by the primorial base expansion of n as in A276086. Sequence A342018 shows the positions of the terms here that have just moved to the "no hope" region, while A342019 shows how many prime powers in any term have breached the p^p limit. Note that the results are same as for A327860(n), as the division by "regular part", A328572(n) does not affect the "wild part" of the arithmetic derivative of A276086(n). - Antti Karttunen, Mar 12 2021
I decided to name this sequence in honor of Lithuanian artist Mikalojus Čiurlionis, 1875 - 1911, as the scatter plot of this sequence reminds me thematically of his work "Pyramid sonata", with similar elements: fractal repetition in different scales and high tension present, discharging as lightning. Like Čiurlionis's paintings, this sequence has many variations, see the Formula and Crossrefs sections. - Antti Karttunen, Apr 30 2022

Crossrefs

Cf. A342463 [= a(A329886(n))], A342920 [= a(A108951(n))], A342921 [= a(A276156(n))], A342017 [= A342007(a(n))], A342019 [= A129251(a(n))].
Cf. A166486 (a(n) mod 2, parity of terms, see comment in A327860), A353640 (a(n) mod 4).
Cf. A344760, A344761, A344762, A346252, A346253 and A345930, A353572, A353574 for permuted and other variants.
Cf. A351952 (similar definition, but using factorial base, with quite a different look).

Programs

  • PARI
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A342002(n) = A342001(A276086(n)); \\ Uses also code from A342001.
    
  • PARI
    A342002(n) = { my(s=0, m=1, p=2, e); while(n, e = (n%p); m *= p^(e>0); s += (e/p); n = n\p; p = nextprime(1+p)); (s*m); }; \\ Antti Karttunen, Mar 12 2021
    
  • PARI
    A342002(n) = { my(s=0, p=2, e); while(n, e = (n%p); s += (e/p); n = n\p; p = nextprime(1+p)); numerator(s); }; \\ (Taking denominator instead would give A328571) - Antti Karttunen, Mar 12 2021

Formula

a(n) = A342001(A276086(n)) = A083345(A276086(n)).
a(n) = A327860(n) / A328572(n) = A003415(A276086(n)) / A003557(A276086(n)).
From Antti Karttunen, Jul 18 2021: (Start)
There are several permutations of this sequence. The following formulas show the relations:
a(n) = A344760(A289234(n)).
a(n) = A346252(A328623(n)) = A346253(A328622(n)).
a(n) = A344761(A328626(n)) = A344762(A328625(n)).
(End)

Extensions

Sequence renamed as "Čiurlionis sequence" to honor Lithuanian artist Mikalojus Čiurlionis - Antti Karttunen, Apr 30 2022

A327969 The length of a shortest path from n to zero when using the transitions x -> A003415(x) and x -> A276086(x), or -1 if no zero can ever be reached from n.

Original entry on oeis.org

0, 1, 2, 2, 5, 2, 3, 2, 6, 4, 3, 2, 5, 2, 5, 6, 6, 2, 5, 2, 7, 4, 3, 2
Offset: 0

Views

Author

Antti Karttunen, Oct 07 2019

Keywords

Comments

The terms of this sequence are currently known only up to n=23, with the value of a(24) still being uncertain. For the tentative values of the later terms, see sequence A328324 which gives upper bounds for these terms, many of which are very likely also exact values for them.
As A051903(A003415(n)) >= A051903(n)-1, it means that it takes always at least A051903(n) steps to a prime if iterating solely with A003415.
Some known values and upper bounds from n=24 onward:
a(24) <= 11.
a(25) = 4.
a(26) = 7.
a(27) <= 22.
a(33) = 4.
a(39) = 4.
a(40) = 5.
a(42) = 3.
a(44) <= 10.
a(45) = 5.
a(46) = 5.
a(48) = 9.
a(49) = 6.
a(50) = 6.
a(55) = 7.
a(74) = 5.
a(77) = 6.
a(80) <= 18.
a(111) = 6.
a(112) = 8.
a(125) <= 9.
a(240) = 7.
a(625) <= 10.
a(875) = 8.
From Antti Karttunen, Feb 20 2022: (Start)
a(2556) <= 20.
a(5005) <= 19.
What is the value of a(128), and is A328324(128) well-defined?
When I created this sequence, I conjectured that by applying two simple arithmetic operations "arithmetic derivative" (A003415) and "primorial base exp-function" (A276086) in some combination, and starting from any positive integer, we could always reach zero (via a prime and 1).
At the first sight it seems almost certain that the conjecture holds, as it is always possible at every step to choose from two options (which very rarely meet, see A351088), leading to an exponentially growing search tree, and also because A276086 always jumps out of any dead-end path with p^p-factors (dead-end from the arithmetic derivative's point of view). However, it should be realized that one can reach the terms of either A157037 or A327978 with a single step of A003415 only from squarefree numbers (or respectively, cubefree numbers that are not multiples of 4, see A328234), and in general, because A003415 decreases the maximal exponent of the prime factorization (A051903) at most by one, if the maximal exponent in the prime factorization of n is large, there is a correspondingly long path to traverse if we take only A003415-steps in the iteration, and any step could always lead with certain probability to a p^p-number. Note that the antiderivatives of primorials with a square factor seem quite rare, see A351029.
And although taking a A276086-step will always land us to a p^p-free number (which a priori is not in the obvious dead-end path of A003415, although of course it might eventually lead to one), it (in most cases) also increases the magnitude of number considerably, that tends to make the escape even harder. Particularly, in the majority of cases A276086 increases the maximal exponent (which in the preimage is A328114, "maximal digit value used when n is written in primorial base"), so there will be even a longer journey down to squarefree numbers when using A003415. See the sequences A351067 and A351071 for the diminishing ratios suggesting rapidly diminishing chances of successfully reaching zero from larger terms of A276086. Also, the asymptotic density of A276156 is zero, even though A351073 may contain a few larger values.
On the other hand, if we could prove that by (for example) continuing upwards with any p^p-path of A003415 we could eventually reach with a near certainty a region of numbers with low values of A328114 (i.e., numbers with smallish digits in primorial base, like A276156), then the situation might change (see also A351089). However, a few empirical runs seemed to indicate otherwise.
For all of the above reasons, I now conjecture that there are natural numbers from which it is not possible to reach zero with any combination of steps. For example 128 or 5^5 = 3125.
(End)

Examples

			Let -A> stand for an application of A003415 and -B> for an application of A276086, then, we have for example:
a(8) = 6 as we have 8 -A>  12 -B>  25 -A> 10 -A>  7 -A> 1 -A> 0, six transitions in total (and there are no shorter paths).
a(15) = 6 as we have 15 -B> 150 -A> 185 -A> 42 -A> 41 -A> 1 -A> 0, six transitions in total (and there are no shorter paths).
a(20) = 7, as 20 -B> 375 -A> 350 -A> 365 -A> 78 -A> 71 -A> 1 -A> 0, and there are no shorter paths.
For n=112, we know that a(112) cannot be larger than eight, as A328099^(8)(112) = 0, so we have a path of length 8 as 112 -A> 240 -B> 77 -A> 18 -A> 21 -A> 10 -A> 7 -A> 1 -A> 0. Checking all 32 combinations of the paths of lengths of 5 starting from 112 shows that none of them or their prefixes ends with a prime, thus there cannot be any shorter path, and indeed a(112) = 8.
a(24) <= 11 as A328099^(11)(24) = 0, i.e., we have 24 -A> 44 -A> 48 -A> 112 -A> 240 -B> 77 -A> 18 -A> 21 -A> 10 -A> 7 -A> 1 -A> 0. On the other hand, 24 -B> 625 -B> 17794411250 -A> 41620434625 -A> 58507928150 -A> 86090357185 -A> 54113940517 -A> 19982203325 -A> 12038411230 -A> 8426887871 -A> 1 -A> 0, thus offering another path of length 11.
		

Crossrefs

Cf. A328324 (a sequence giving upper bounds, computed with restricted search space).
Sequences for whose terms k, value a(k) has a guaranteed constant upper bound: A000040, A002110, A143293, A157037, A192192, A327978, A328232, A328233, A328239, A328240, A328243, A328249, A328313.
Sequences for whose terms k, it is guaranteed that a(k) has finite value > 0, even if not bound by a constant: A099308, A328116.

Programs

  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A327969(n,searchlim=0) = if(!n,n,my(xs=Set([n]),newxs,a,b,u); for(k=1,oo, print("n=", n, " k=", k, " xs=", xs); newxs=Set([]); for(i=1,#xs,u = xs[i]; a = A003415(u); if(0==a, return(k)); if(isprime(a), return(k+2)); b = A276086(u); if(isprime(b), return(k+1+(u>2))); newxs = setunion([a],newxs); if(!searchlim || (b<=searchlim),newxs = setunion([b],newxs))); xs = newxs));

Formula

a(0) = 0, a(p^p) = 1 + a(A276086(p^p)) for primes p, and for other numbers, a(n) = 1+min(a(A003415(n)), a(A276086(n))).
a(p) = 2 for all primes p.
For all n, a(n) <= A328324(n).
Let A stand the transition x -> A003415(x), and B stand for x -> A276086(x). The following sequences give some constant upper limits, because it is guaranteed that the combination given in brackets (the leftmost A or B is applied first) will always lead to a prime:
For all n, a(A157037(n)) = 3. [A]
For n > 1, a(A002110(n)) = 3. [B]
For all n, a(A192192(n)) <= 4. [AA]
For all n, a(A327978(n)) = 4. [AB]
For all n, a(A328233(n)) <= 4. [BA]
For all n, a(A143293(n)) <= 4. [BB]
For all n, a(A328239(n)) <= 5. [AAA]
For all n, a(A328240(n)) <= 5. [BAA]
For all n, a(A328243(n)) <= 5. [ABB]
For all n, a(A328313(n)) <= 5. [BBB]
For all n, a(A328249(n)) <= 6. [BAAA]
For all k in A046099, a(k) >= 4, and if A328114(k) > 1, then certainly a(k) > 4.

A276154 a(n) = Shift primorial base representation (A049345) of n left by one digit (append one zero to the right, then convert back to decimal).

Original entry on oeis.org

0, 2, 6, 8, 12, 14, 30, 32, 36, 38, 42, 44, 60, 62, 66, 68, 72, 74, 90, 92, 96, 98, 102, 104, 120, 122, 126, 128, 132, 134, 210, 212, 216, 218, 222, 224, 240, 242, 246, 248, 252, 254, 270, 272, 276, 278, 282, 284, 300, 302, 306, 308, 312, 314, 330, 332, 336, 338, 342, 344, 420, 422, 426, 428, 432, 434, 450, 452, 456, 458, 462, 464, 480, 482, 486, 488
Offset: 0

Views

Author

Antti Karttunen, Aug 24 2016

Keywords

Examples

			   n   A049345  with one zero           converted back
                appended to the right   to decimal = a(n)
---------------------------------------------------------
   0       0            00                     0
   1       1            10                     2
   2      10           100                     6
   3      11           110                     8
   4      20           200                    12
   5      21           210                    14
   6     100          1000                    30
   7     101          1010                    32
   8     110          1100                    36
   9     111          1110                    38
  10     120          1200                    42
  11     121          1210                    44
  12     200          2000                    60
  13     201          2010                    62
  14     210          2100                    66
  15     211          2110                    68
  16     220          2200                    72
		

Crossrefs

Complement: A276155.
Cf. A002110, A003961, A049345, A276085, A276086, A276151, A276152, A286629 [= a(A061720(n-1))], A324384 [= gcd(n, a(n))], A323879, A328770 (a subsequence).
Cf. also A276156, A328461, A328464.
Dispersion array and its transpose: A276943, A276945, with primorials divided out: A286623, A286625.
Analogous to A153880.

Programs

  • Mathematica
    nn = 75; b = MixedRadix[Reverse@ Prime@ NestWhileList[# + 1 &, 1, Times @@ Prime@ Range[#] <= nn &]]; Table[FromDigits[#, b] &@ Append[IntegerDigits[n, b], 0], {n, 0, nn}] (* Version 10.2, or *)
    f[n_] := Block[{a = {{0, n}}}, Do[AppendTo[a, {First@ #, Last@ #} &@ QuotientRemainder[a[[-1, -1]], Times @@ Prime@ Range[# - i]]], {i, 0, #}] &@ NestWhile[# + 1 &, 0, Times @@ Prime@ Range[# + 1] <= n &]; Rest[a][[All, 1]]]; Table[Total[Times @@@ Transpose@ {Map[Times @@ # &, Prime@ Range@ Range[0, Length@ # - 1]], Reverse@ #}] &@ Append[f@ n, 0], {n, 0, 75}] (* Michael De Vlieger, Aug 26 2016 *)
  • PARI
    A276154(n) = A276085(A003961(A276086(n))); \\ Antti Karttunen, Mar 15 2021
    
  • PARI
    A276151(n) = { my(s=1); forprime(p=2, , if(n%p, return(n-s), s *= p)); };
    A276152(n) = { my(s=1); forprime(p=2, , if(n%p, return(s*p), s *= p)); };
    A276154(n) = if(!n,n,(A276152(n) + A276154(A276151(n)))); \\ Antti Karttunen, Mar 15 2021
    
  • Scheme
    (definec (A276154 n) (if (zero? n) n (+ (A276152 n) (A276154 (A276151 n)))))

Formula

a(0) = 0; for n >= 1, a(n) = A276152(n) + a(A276151(n)).
a(n) = A276085(A003961(A276086(n))). - Antti Karttunen, Mar 15 2021

A328571 Primorial base expansion of n converted into its prime product form, but with all nonzero digits replaced by 1's: a(n) = A007947(A276086(n)).

Original entry on oeis.org

1, 2, 3, 6, 3, 6, 5, 10, 15, 30, 15, 30, 5, 10, 15, 30, 15, 30, 5, 10, 15, 30, 15, 30, 5, 10, 15, 30, 15, 30, 7, 14, 21, 42, 21, 42, 35, 70, 105, 210, 105, 210, 35, 70, 105, 210, 105, 210, 35, 70, 105, 210, 105, 210, 35, 70, 105, 210, 105, 210, 7, 14, 21, 42, 21, 42, 35, 70, 105, 210, 105, 210, 35, 70, 105, 210, 105, 210, 35, 70
Offset: 0

Views

Author

Antti Karttunen, Oct 20 2019

Keywords

Crossrefs

Cf. A276156 (gives the indices where this coincides with A276086).

Programs

  • Mathematica
    rad[n_] := Times @@ FactorInteger[n][[All, 1]];
    A276086[n0_] := Module[{m = 1, i = 1, n = n0, p}, While[n > 0, p = Prime[i]; m *= p^Mod[n, p]; n = Quotient[n, p]; i++]; m];
    a[n_] := rad[A276086[n]];
    Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Dec 01 2021, after Antti Karttunen in A276086 *)
  • PARI
    A328571(n) = { my(m=1, p=2); while(n, m *= (p^!!(n%p)); n = n\p; p = nextprime(1+p)); (m); };

Formula

a(n) = A007947(A276086(n)).
a(n) = A276086(n) / A328572(n).
a(A276156(n)) = A276086(A276156(n)). [And at no other points the equality holds]
A001221(a(n)) = A267263(n).
a(n) = A083346(A276086(n)). - Antti Karttunen, Feb 28 2021

A328233 Numbers n such that the arithmetic derivative of A276086(n) is prime.

Original entry on oeis.org

3, 7, 9, 33, 37, 38, 211, 213, 218, 241, 242, 246, 247, 249, 2313, 2317, 2319, 2341, 2342, 2346, 2521, 2523, 2526, 2529, 2550, 2553, 2559, 30031, 30038, 30039, 30061, 30062, 30063, 30066, 30069, 30242, 30243, 30249, 30270, 30278, 30279, 32341, 32342, 32347, 32370, 32373, 32377, 32379, 32551, 32553, 510513, 510518, 510519
Offset: 1

Views

Author

Antti Karttunen, Oct 09 2019

Keywords

Comments

Numbers n for which A327860(n) = A003415(A276086(n)) is a prime.
Numbers n such that A276086(n) is in A157037.
Terms come in distinct "batches", where in each batch they are "slightly more" than the nearest primorial (A002110) below. This is explained by the fact that for A276086(n) to be a squarefree (which is the necessary condition for A157037), n's primorial base expansion (A049345) must not contain digits larger than 1. Thus this is a subsequence of A276156.
Numbers n such that A327860(A276086(n)) = A003415(A276087(n)) is a prime [A276087(n) is in A157037] are much rarer: 2, 4, 30, 212, 421, 30045, 510511, 512820, 9729723, ...
For all terms k in this sequence, A327969(k) <= 4, and particularly A327969(k) = 2 when k is a prime. Otherwise, when k is not a prime, but A003415(k) is, A327969(k) = 3, while for other cases (when k is neither prime nor in A157037), we have A327969(k) = 4.

Crossrefs

Programs

  • PARI
    A327860(n) = { my(m=1, i=0, s=0, pr=1, nextpr); while((n>0), i=i+1; nextpr = prime(i)*pr; if((n%nextpr), my(e=((n%nextpr)/pr)); m *= (prime(i)^e); s += (e / prime(i)); n-=(n%nextpr)); pr=nextpr); (s*m); };
    isA328233(n) = isprime(A327860(n));
Previous Showing 11-20 of 54 results. Next