A295385
a(n) = n!*Sum_{k=0..n} binomial(2*n,n-k)*n^k/k!.
Original entry on oeis.org
1, 3, 32, 579, 14736, 483115, 19376928, 918980139, 50306339072, 3121729082739, 216541483852800, 16603614676249843, 1394473165806440448, 127308860552307549531, 12553171419275174137856, 1329537514269062031406875, 150531055969843353812533248, 18143286205523964035258551651
Offset: 0
-
[Factorial(n)*(&+[Binomial(2*n,n-k)*n^k/Factorial(k): k in [0..n]]): n in [0..30]]; // G. C. Greubel, Feb 06 2018
-
Table[n! SeriesCoefficient[Exp[n x/(1 - x)]/(1 - x)^(n + 1), {x, 0, n}], {n, 0, 17}]
Table[n! LaguerreL[n, n, -n], {n, 0, 17}]
Table[(-1)^n HypergeometricU[-n, n + 1, -n], {n, 0, 17}]
Join[{1}, Table[n! Sum[Binomial[2 n, n - k] n^k/k!, {k, 0, n}], {n, 1, 17}]]
-
for(n=0,30, print1(n!*sum(k=0,n, binomial(2*n,n-k)*n^k/k!), ", ")) \\ G. C. Greubel, Feb 06 2018
A295406
a(n) = n! * Laguerre(n, 2*n, -n).
Original entry on oeis.org
1, 4, 58, 1422, 49000, 2174360, 118023264, 7574532826, 561071549056, 47111034709260, 4421715905632000, 458741213603157254, 52129735913348001792, 6439324687323193520608, 859089518697047400878080, 123108032319553206480143250, 18858657171509448248927617024
Offset: 0
-
[Factorial(n)*(&+[Binomial(3*n,n-k)*n^k/Factorial(k): k in [0..n]]): n in [0..30]]; // G. C. Greubel, Feb 06 2018
-
Table[n!*LaguerreL[n,2*n,-n],{n,0,15}]
Join[{1},Table[n!*Sum[Binomial[3*n, n-k]*n^k/k!, {k, 0, n}], {n, 1, 15}]]
-
for(n=0,30, print1(n!*sum(k=0, n, binomial(3*n,n-k)*n^k/k!), ", ")) \\ G. C. Greubel, Feb 06 2018
-
a(n) = n!*pollaguerre(n, 2*n, -n); \\ Michel Marcus, Feb 05 2021
A295407
a(n) = n! * Laguerre(n, 3*n, -n).
Original entry on oeis.org
1, 5, 92, 2859, 124832, 7018105, 482598720, 39236322839, 3681751480832, 391611920476653, 46560370087846400, 6119025385880816035, 880818377346674454528, 137824220501484017301281, 23291983597732334528110592, 4228010378355969165140319375
Offset: 0
-
[Factorial(n)*(&+[Binomial(4*n,n-k)*n^k/Factorial(k): k in [0..n]]): n in [0..30]]; // G. C. Greubel, Feb 06 2018
-
Table[n!*LaguerreL[n,3*n,-n],{n,0,15}]
Join[{1},Table[n!*Sum[Binomial[4*n, n-k]*n^k/k!, {k, 0, n}], {n, 1, 15}]]
-
for(n=0,30, print1(n!*sum(k=0, n, binomial(4*n,n-k)*n^k/k!), ", ")) \\ G. C. Greubel, Feb 06 2018
-
a(n) = n!*pollaguerre(n, 3*n, -n); \\ Michel Marcus, Feb 05 2021
A295408
a(n) = n! * Laguerre(n, 4*n, -n).
Original entry on oeis.org
1, 6, 134, 5052, 267576, 18246850, 1521907056, 150077897088, 17080661438336, 2203559337858174, 317761804144896000, 50650336389453807556, 8843008543955452118016, 1678231571506037926192698, 343989152383931539269349376, 75733086648535784012234565000
Offset: 0
-
[Factorial(n)*(&+[Binomial(5*n,n-k)*n^k/Factorial(k): k in [0..n]]): n in [0..30]]; // G. C. Greubel, Feb 06 2018
-
Table[n!*LaguerreL[n,4*n,-n],{n,0,15}]
Join[{1},Table[n!*Sum[Binomial[5*n,n-k]*n^k/k!,{k,0,n}],{n,1,15}]]
-
for(n=0,30, print1(n!*sum(k=0, n, binomial(5*n,n-k)*n^k/k!), ", ")) \\ G. C. Greubel, Feb 06 2018
-
a(n) = n!*pollaguerre(n, 4*n, -n); \\ Michel Marcus, Feb 05 2021
A295409
a(n) = n! * Laguerre(n, n^2, -n).
Original entry on oeis.org
1, 3, 58, 2859, 267576, 40818095, 9235507968, 2906955312471, 1215257338052992, 651548571287972859, 435901423022852332800, 356000439852418418920643, 348583395952381998326141952, 403108990190536860168604229031, 543577365164816368801494214352896
Offset: 0
-
[Factorial(n)*(&+[Binomial(n*(n+1), n-k)*n^k/Factorial(k): k in [0..n]]): n in [0..30]]; // G. C. Greubel, May 11 2018
-
seq(n!*orthopoly[L](n,n^2,-n),n=0..30); # Robert Israel, Nov 22 2017
-
Table[n!*LaguerreL[n,n^2,-n],{n,0,15}]
Join[{1},Table[n!*Sum[Binomial[n*(n+1),n-k]*n^k/k!,{k,0,n}],{n,1,15}]]
-
for(n=0,30, print1(n!*sum(k=0,30, binomial(n*(n+1), n-k)*n^k/k!), ", ")) \\ G. C. Greubel, May 11 2018
-
a(n) = n!*pollaguerre(n, n^2, -n); \\ Michel Marcus, Feb 05 2021
A330260
a(n) = n! * Sum_{k=0..n} binomial(n,k) * n^(n - k) / k!.
Original entry on oeis.org
1, 2, 17, 352, 13505, 830126, 74717857, 9263893892, 1513712421377, 315230799073690, 81499084718806001, 25612081645835777192, 9615370149488574778177, 4250194195208050117007942, 2184834047906975645398282625, 1292386053018890618812398220876
Offset: 0
-
[Factorial(n)*&+[Binomial(n,k)*n^(n-k)/Factorial(k):k in [0..n]]:n in [0..15]]; // Marius A. Burtea, Dec 18 2019
-
Join[{1}, Table[n! Sum[Binomial[n, k] n^(n - k)/k!, {k, 0, n}], {n, 1, 15}]]
Join[{1}, Table[n^n n! LaguerreL[n, -1/n], {n, 1, 15}]]
Table[n! SeriesCoefficient[Exp[x/(1 - n x)]/(1 - n x), {x, 0, n}], {n, 0, 15}]
-
a(n) = n! * sum(k=0, n, binomial(n,k) * n^(n-k)/k!); \\ Michel Marcus, Dec 18 2019
A295418
a(n) = n! * Laguerre(n, n*(n-1), -n).
Original entry on oeis.org
1, 2, 32, 1422, 124832, 18246850, 4005713952, 1232956594814, 506672220394496, 267992015325604578, 177340024595660672000, 143531889358151618790862, 139482579412432078779322368, 160267575964062522718064075618, 214924620455826226723051817295872
Offset: 0
-
[Factorial(n)*(&+[Binomial(n^2, n-k)*n^k/Factorial(k): k in [0..n]]): n in [0..25]]; // G. C. Greubel, May 13 2018
-
Table[n!*LaguerreL[n,n*(n-1),-n],{n,0,15}]
Join[{1},Table[n!*Sum[Binomial[n^2,n-k]*n^k/k!,{k,0,n}],{n,1,15}]]
-
for(n=0,25, print1(n!*sum(k=0,n, binomial(n^2, n-k)*n^k/k!), ", ")) \\ G. C. Greubel, May 13 2018
-
a(n) = n!*pollaguerre(n, n*(n-1), -n); \\ Michel Marcus, Feb 05 2021
A343849
a(n) = Sum_{k = 0..n} n! * LaguerreL(n, -k).
Original entry on oeis.org
1, 3, 23, 294, 5194, 116620, 3175717, 101696700, 3745365444, 155975005998, 7247927859875, 371803988506742, 20870023274690966, 1272424816703533792, 83736949788656865729, 5916106654032037435800, 446636583718649775483144, 35882981062654529341219962, 3056767877633271802374850239
Offset: 0
-
a[n_] := Sum[n! LaguerreL[n, -k], {k, 0, n}];
Table[a[n], {n, 0, 18}]
-
a(n) = n!*sum(m=0, n, sum(j=0, n, binomial(n, j) * m^j / j!))
for(n=0, 18, print(a(n)))
A344048
T(n, k) = n! * [x^n] exp(k * x/(1 - x))/(1 - x). Triangle read by rows, T(n, k) for 0 <= k <= n.
Original entry on oeis.org
1, 1, 2, 2, 7, 14, 6, 34, 86, 168, 24, 209, 648, 1473, 2840, 120, 1546, 5752, 14988, 32344, 61870, 720, 13327, 58576, 173007, 414160, 866695, 1649232, 5040, 130922, 671568, 2228544, 5876336, 13373190, 27422352, 51988748
Offset: 0
Triangle starts:
[0] 1;
[1] 1, 2;
[2] 2, 7, 14;
[3] 6, 34, 86, 168;
[4] 24, 209, 648, 1473, 2840;
[5] 120, 1546, 5752, 14988, 32344, 61870;
[6] 720, 13327, 58576, 173007, 414160, 866695, 1649232;
[7] 5040, 130922, 671568, 2228544, 5876336, 13373190, 27422352, 51988748;
.
Array whose upward read antidiagonals are the rows of the triangle.
n\k 0 1 2 3 4 5
--------------------------------------------------------------------
[0] 1, 2, 14, 168, 2840, 61870, ...
[1] 1, 7, 86, 1473, 32344, 866695, ...
[2] 2, 34, 648, 14988, 414160, 13373190, ...
[3] 6, 209, 5752, 173007, 5876336, 224995745, ...
[4] 24, 1546, 58576, 2228544, 91356544, 4094022230, ...
[5] 120, 13327, 671568, 31636449, 1542401920, 80031878175, ...
[6] 720, 130922, 8546432, 490102164, 28075364096, 1671426609550, ...
-
# Rows of the array:
A := (n, k) -> (n + k)!*LaguerreL(n + k, -k):
seq(print(seq(simplify(A(n, k)), k = 0..6)), n = 0..6);
# Columns of the array:
egf := n -> exp(n*x/(1-x))/(1-x): ser := n -> series(egf(n), x, 16):
C := (k, n) -> (n + k)!*coeff(ser(k), x, n + k):
seq(print(seq(C(k, n), n = 0..6)), k=0..6);
-
T[n_, k_] := (-1)^(n) HypergeometricU[-n, 1, -k];
Table[T[n, k], {n, 0, 7}, {k, 0, n}] // Flatten
(* Alternative: *)
T[n_, k_] := n ! LaguerreL[n , -k];
Table[T[n, k], {n, 0, 7}, {k, 0, n}] // Flatten
-
T(n, k) = n! * sum(j=0, n, binomial(n, j) * k^j / j!)
for(n=0, 9, for(k=0, n, print(T(n, k))))
-
# Columns of the array:
def column(k, len):
R. = PowerSeriesRing(QQ, default_prec=len+k)
f = exp(k * x / (1 - x)) / (1 - x)
return f.egf_to_ogf().list()[k:]
for col in (0..6): print(column(col, 8))
# Alternative:
@cached_function
def L(n, x):
if n == 0: return 1
if n == 1: return 1 - x
return (L(n-1, x) * (2*n - 1 - x) - L(n-2, x)*(n - 1)) / n
A344048 = lambda n, k: factorial(n)*L(n, -k)
print(flatten([[A344048(n, k) for k in (0..n)] for n in (0..7)]))
A295384
a(n) = n!*Sum_{k=0..n} (-1)^k*binomial(2*n,n-k)*n^k/k!.
Original entry on oeis.org
1, 1, 0, -15, -112, -135, 9504, 152425, 610560, -27692847, -765107200, -6289891839, 213472972800, 9380264146825, 129378550468608, -3294028613874375, -226623617585053696, -4707649131227927775, 83803818828756418560, 9446689798312021406353, 277055229100887244800000
Offset: 0
-
[Factorial(n)*(&+[(-1)^k*Binomial(2*n,n-k)*n^k/Factorial(k): k in [0..n]]): n in [0..30]]; // G. C. Greubel, Feb 06 2018
-
a := n -> pochhammer(n, n)*hypergeom([1 - n], [n], n):
seq(simplify(a(n)), n = 0..20); # Peter Luschny, Mar 23 2023
-
Table[n! SeriesCoefficient[Exp[-n x/(1 - x)]/(1 - x)^(n + 1), {x, 0, n}], {n, 0, 20}]
Table[n! LaguerreL[n, n, n], {n, 0, 20}]
Table[(-1)^n HypergeometricU[-n, n + 1, n], {n, 0, 20}]
Join[{1}, Table[n! Sum[(-1)^k Binomial[2 n, n - k] n^k/k!, {k, 0, n}], {n, 1, 20}]]
-
for(n=0,30, print1(n!*sum(k=0,n, (-1)^k*binomial(2*n,n-k)*n^k/k!), ", ")) \\ G. C. Greubel, Feb 06 2018
Comments