A350947 Heinz numbers of integer partitions with the same number of even parts, odd parts, even conjugate parts, and odd conjugate parts.
1, 6, 84, 210, 490, 525, 2184, 2340, 5460, 9464, 12012, 12740, 12870, 13650, 14625, 19152, 22308, 30030, 34125, 43940, 45144, 55770, 59150, 66066, 70070, 70785, 75075, 79625, 82992, 88920
Offset: 1
Keywords
Examples
The terms together with their prime indices begin: 1: () 6: (2,1) 84: (4,2,1,1) 210: (4,3,2,1) 490: (4,4,3,1) 525: (4,3,3,2) 2184: (6,4,2,1,1,1) 2340: (6,3,2,2,1,1) 5460: (6,4,3,2,1,1) 9464: (6,6,4,1,1,1) 12012: (6,5,4,2,1,1) 12740: (6,4,4,3,1,1) 12870: (6,5,3,2,2,1) 13650: (6,4,3,3,2,1) 14625: (6,3,3,3,2,2) 19152: (8,4,2,2,1,1,1,1) For example, the partition (6,6,4,1,1,1) has conjugate (6,3,3,3,2,2), and all four statistics are equal to 3, so 9464 is in the sequence.
Crossrefs
These partitions are counted by A351978.
There are four individual statistics:
There are six possible pairings of statistics:
There are three possible double-pairings of statistics:
A122111 represents partition conjugation using Heinz numbers.
A195017 = # of even parts - # of odd parts.
A316524 = alternating sum of prime indices.
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]]; Select[Range[1000],Count[primeMS[#],?EvenQ]==Count[primeMS[#],?OddQ]==Count[conj[primeMS[#]],?EvenQ]==Count[conj[primeMS[#]],?OddQ]&]
Comments