cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-47 of 47 results.

A384392 Number of integer partitions of n whose distinct parts are maximally refined.

Original entry on oeis.org

1, 1, 2, 2, 4, 6, 7, 10, 14, 20, 24, 33, 41, 55, 70, 88, 110, 140, 171, 214, 265, 324, 397, 485, 588, 711, 861, 1032, 1241, 1486, 1773
Offset: 0

Views

Author

Gus Wiseman, Jun 07 2025

Keywords

Comments

Given any partition, the following are equivalent:
1) The distinct parts are maximally refined.
2) Every strict partition of a part contains a part. In other words, if y is the set of parts and z is any strict partition of any element of y, then z must contain at least one element from y.
3) No part is a sum of distinct non-parts.

Examples

			The a(1) = 1 through a(8) = 14 partitions:
  (1)  (2)   (21)   (22)    (32)     (222)     (322)      (332)
       (11)  (111)  (31)    (41)     (321)     (331)      (431)
                    (211)   (221)    (411)     (421)      (521)
                    (1111)  (311)    (2211)    (2221)     (2222)
                            (2111)   (3111)    (3211)     (3221)
                            (11111)  (21111)   (4111)     (3311)
                                     (111111)  (22111)    (4211)
                                               (31111)    (22211)
                                               (211111)   (32111)
                                               (1111111)  (41111)
                                                          (221111)
                                                          (311111)
                                                          (2111111)
                                                          (11111111)
		

Crossrefs

The strict case is A179009, ranks A383707.
For subsets instead of partitions we have A326080, complement A384350.
These partitions are ranked by A384320, complement A384321.
A048767 is the Look-and-Say transform, fixed points A048768, counted by A217605.
A239455 counts Look-and-Say or section-sum partitions, ranks A351294 or A381432.
A351293 counts non-Look-and-Say or non-section-sum partitions, ranks A351295 or A381433.

Programs

  • Mathematica
    nonsets[y_]:=If[Length[y]==0,{},Rest[Subsets[Complement[Range[Max@@y],y]]]];
    Table[Length[Select[IntegerPartitions[n],Intersection[#,Total/@nonsets[#]]=={}&]],{n,0,15}]

A302534 Squarefree numbers whose prime indices are also squarefree and have disjoint prime indices.

Original entry on oeis.org

1, 2, 3, 5, 6, 10, 11, 13, 15, 17, 22, 26, 29, 30, 31, 33, 34, 41, 43, 47, 51, 55, 58, 59, 62, 66, 67, 73, 79, 82, 83, 85, 86, 93, 94, 101, 102, 109, 110, 113, 118, 123, 127, 134, 137, 139, 141, 143, 145, 146, 149, 155, 157, 158, 163, 165, 166, 167, 170, 177
Offset: 1

Views

Author

Gus Wiseman, Apr 09 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n.

Examples

			Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of set systems.
01: {}
02: {{}}
03: {{1}}
05: {{2}}
06: {{},{1}}
10: {{},{2}}
11: {{3}}
13: {{1,2}}
15: {{1},{2}}
17: {{4}}
22: {{},{3}}
26: {{},{1,2}}
29: {{1,3}}
30: {{},{1},{2}}
31: {{5}}
33: {{1},{3}}
34: {{},{4}}
41: {{6}}
43: {{1,4}}
47: {{2,3}}
51: {{1},{4}}
55: {{2},{3}}
58: {{},{1,3}}
59: {{7}}
62: {{},{5}}
66: {{},{1},{3}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],SquareFreeQ[#]&&UnsameQ@@Join@@primeMS/@primeMS[#]&]

A384395 Number of integer partitions of n with more than one proper way to choose disjoint strict partitions of each part.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 2, 1, 4, 5, 8, 8, 12, 17, 22, 29, 31, 40, 50, 65, 77, 101, 112, 135, 162, 201
Offset: 0

Views

Author

Gus Wiseman, May 30 2025

Keywords

Comments

By "proper" we exclude the case of all singletons, which is disjoint when n is squarefree.

Examples

			For the partition (8,5,2) we have four choices:
  ((8),(4,1),(2))
  ((7,1),(5),(2))
  ((5,3),(4,1),(2))
  ((4,3,1),(5),(2))
Hence (8,5,2) is counted under a(15).
The a(5) = 1 through a(12) = 12 partitions:
  (5)  (6)    (7)  (8)    (9)    (10)     (11)     (12)
       (3,3)       (4,4)  (5,4)  (5,5)    (6,5)    (6,6)
                   (5,3)  (6,3)  (6,4)    (7,4)    (7,5)
                   (7,1)  (7,2)  (7,3)    (8,3)    (8,4)
                          (8,1)  (8,2)    (9,2)    (9,3)
                                 (9,1)    (10,1)   (10,2)
                                 (4,3,3)  (5,3,3)  (11,1)
                                 (4,4,2)  (5,5,1)  (5,5,2)
                                                   (6,3,3)
                                                   (6,4,2)
                                                   (6,5,1)
                                                   (9,2,1)
		

Crossrefs

For just one choice we have A179009, ranked by A383707.
Twice-partitions of this type are counted by A279790.
For at least one choice we have A383708, odd case A383533.
For no choices we have A383710, odd case A383711.
For at least one proper choice we have A384317, ranked by A384321.
The strict version for at least one proper choice is A384318, ranked by A384322.
The strict version for just one proper choice is A384319, ranked by A384390.
For just one proper choice we have A384323, ranks A384347 = positions of 2 in A383706.
For no proper choices we have A384348, ranked by A384349.
These partitions are ranked by A384393.
A000041 counts integer partitions, strict A000009.
A048767 is the Look-and-Say transform, fixed points A048768, counted by A217605.
A239455 counts Look-and-Say partitions, ranks A351294 or A381432.
A351293 counts non-Look-and-Say partitions, ranks A351295 or A381433.
A357982 counts choices of strict partitions of each prime index, non-strict A299200.

Programs

  • Mathematica
    pofprop[y_]:=Select[DeleteCases[Join@@@Tuples[IntegerPartitions/@y],y],UnsameQ@@#&];
    Table[Length[Select[IntegerPartitions[n],Length[pofprop[#]]>1&]],{n,0,15}]

A301756 Number of ways to choose disjoint strict rooted partitions of each part in a strict rooted partition of n.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 7, 10, 15, 22, 30, 42, 60, 85, 114, 155, 206, 286, 394, 524, 683, 910, 1187, 1564, 2090, 2751, 3543, 4606, 5917, 7598, 9771, 12651, 16260, 20822, 26421, 33525, 42463, 53594, 67337, 85299
Offset: 1

Views

Author

Gus Wiseman, Mar 26 2018

Keywords

Comments

A rooted partition of n is an integer partition of n - 1.

Examples

			The a(8) = 10 rooted twice-partitions:
(6), (51), (42), (321),
(5)(), (41)(), (32)(), (4)(1), (3)(2),
(3)(1)().
		

Crossrefs

Programs

  • Mathematica
    twirtns[n_]:=Join@@Table[Tuples[IntegerPartitions[#-1]&/@ptn],{ptn,IntegerPartitions[n-1]}];
    Table[Select[twirtns[n],And[UnsameQ@@Total/@#,UnsameQ@@Join@@#]&]//Length,{n,20}]

A320438 Irregular triangle read by rows where T(n,k) is the number of set partitions of {1,...,n} with all block-sums equal to d, where d is the k-th divisor of n*(n+1)/2 that is >= n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 3, 7, 1, 1, 9, 1, 1, 1, 1, 43, 35, 1, 1, 102, 62, 1, 1, 1, 1, 68, 595, 1, 1, 17, 187, 871, 1480, 361, 1, 1, 2650, 657, 1, 1, 9294, 1, 1, 23728, 1, 1, 27763, 4110, 1, 1, 1850, 25035, 108516, 157991, 7636, 1, 1, 11421, 411474, 1
Offset: 1

Views

Author

Gus Wiseman, Jan 08 2019

Keywords

Examples

			Triangle begins:
    1
    1
    1    1
    1    1
    1    1
    1    1
    1    4    1
    1    3    7    1
    1    9    1
    1    1
    1   43   35    1
    1  102   62    1
    1    1
    1   68  595    1
    1   17  187  871 1480  361    1
    1 2650  657    1
Row 8 counts the following set partitions:
  {{18}{27}{36}{45}}  {{1236}{48}{57}}  {{12348}{567}}  {{12345678}}
                      {{138}{246}{57}}  {{12357}{468}}
                      {{156}{237}{48}}  {{12456}{378}}
                                        {{1278}{3456}}
                                        {{1368}{2457}}
                                        {{1458}{2367}}
                                        {{1467}{2358}}
		

Crossrefs

Programs

  • Mathematica
    spsu[,{}]:={{}};spsu[foo,set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,_}];
    Table[Length[spsu[Select[Subsets[Range[n]],Total[#]==d&],Range[n]]],{n,12},{d,Select[Divisors[n*(n+1)/2],#>=n&]}]

Extensions

More terms from Jinyuan Wang, Feb 27 2025
Name edited by Peter Munn, Mar 06 2025

A384179 Number of ways to choose strict integer partitions of each conjugate prime index of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 4, 2, 1, 2, 1, 3, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 4, 1, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1, 1, 1, 2, 1, 1, 4, 4, 1, 2, 1, 2, 1, 2, 1, 3, 1, 1, 4, 2, 1, 2, 1, 3, 4, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, May 23 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 180 are {1,1,2,2,3}, conjugate {5,3,1}, and we have choices:
  {{5},{3},{1}}
  {{5},{2,1},{1}}
  {{4,1},{3},{1}}
  {{4,1},{2,1},{1}}
  {{3,2},{3},{1}}
  {{3,2},{2,1},{1}}
so a(180) = 6.
		

Crossrefs

Positions of 1 are A037143, complement A033942.
For multiplicities instead of indices we have A050361.
Adding up over all integer partitions gives A270995, disjoint A279790, strict A279375.
The conjugate version is A357982, disjoint A383706.
The disjoint case is A384005.
A000041 counts integer partitions, strict A000009.
A048767 is the Look-and-Say transform, fixed points A048768, counted by A217605.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A239455 counts Look-and-Say or section-sum partitions, ranks A351294 or A381432.
A351293 counts non Look-and-Say or non section-sum partitions, ranks A351295 or A381433.

Programs

  • Mathematica
    fop[y_]:=Join@@@Tuples[strptns/@y];
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[fop[conj[prix[n]]]],{n,100}]

A330464 Number of non-isomorphic weight-n sets of set-systems with distinct multiset unions.

Original entry on oeis.org

1, 1, 3, 9, 32, 111, 463, 1942
Offset: 0

Views

Author

Gus Wiseman, Dec 26 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets of positive integers.
As an alternative description, a(n) is the number of non-isomorphic sets of sets of sets with n leaves where the inner sets of sets all have different multiset unions.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(3) = 9 sets:
  {}  {{{1}}}  {{{1,2}}}      {{{1,2,3}}}
               {{{1},{2}}}    {{{1},{1,2}}}
               {{{1}},{{2}}}  {{{1},{2,3}}}
                              {{{1}},{{1,2}}}
                              {{{1}},{{2,3}}}
                              {{{1},{2},{3}}}
                              {{{1}},{{1},{2}}}
                              {{{1}},{{2},{3}}}
                              {{{1}},{{2}},{{3}}}
		

Crossrefs

Non-isomorphic sets of sets are A283877.
Non-isomorphic sets of sets of sets are A323790.
Non-isomorphic set partitions of set-systems are A323795.
Previous Showing 41-47 of 47 results.