cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A126861 Coefficients in quasimodular form 12*F_3(q) of level 1 and weight 12.

Original entry on oeis.org

0, 0, 1, 80, 1224, 9152, 45276, 170784, 534464, 1438848, 3507102, 7711600, 16053728, 30831552, 57578072, 100382304, 173117952, 280579200, 455656725, 697508496, 1079398256, 1580599552, 2351610612, 3315523424, 4785293568, 6534524160, 9173253878, 12226860576
Offset: 0

Views

Author

N. J. A. Sloane, Mar 15 2007

Keywords

Examples

			12*F_3(q) = q^2 + 80*q^3 + 1224*q^4 + 9152*q^5 + 45276*q^6 + 170784*q^7 + 534464*q^8 + ...
		

Crossrefs

Cf. A280024 (E_2^4*E_4), A308285 (E_2^6), A282752 (E_2^2*E_4^2), A008411 (E_4^3), A282780 (E_2^3*E_6), A282102 (E_2*E_4*E_6), A280869 (E_6^2).

Formula

F_3(q) = (15*E(2)^4*E(4) - 6*E(2)^6 - 12*E(2)^2*E(4)^2 + 7*E(4)^3 + 4*E(2)^3*E(6) - 12*E(2)*E(4)*E(6) + 4*E(6)^2)/35831808, where E(k) is the normalized Eisenstein series of weight k (cf. A006352, etc.).

A282331 Coefficients in q-expansion of E_6^4, where E_6 is the Eisenstein series A013973.

Original entry on oeis.org

1, -2016, 1457568, -411997824, 16227967392, 6497071680960, 440015323483008, 15172068869975808, 327221898778968480, 4913597307075535008, 55440561879404210880, 496424806634688962688, 3672744471642078903168, 23148319448757751932096
Offset: 0

Views

Author

Seiichi Manyama, Feb 12 2017

Keywords

Crossrefs

Cf. A013973 (E_6), A280869 (E_6^2), A282253 (E_6^3), this sequence (E_6^4).
Cf. A282210 (E_2^4), A282012 (E_4^4), this sequence (E_6^4).

Programs

  • Mathematica
    terms = 14;
    E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
    E6[x]^4 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)

Formula

E6(q)^4 = (1 - 504 Sum_{i>=1} sigma_5(i)q^i)^4 where sigma_5(n) is A001160.

A282403 Coefficients in q-expansion of E_4^4*E_6^2, where E_4 and E_6 are respectively the Eisenstein series A004009 and A013973.

Original entry on oeis.org

1, -48, -392688, -67089216, 37279185936, 15066490704480, 2098369148842944, 134803101024250752, 4960096515113176080, 119289357755096403984, 2051412780505054295520, 26894040676649639982144, 281804014682888704101312
Offset: 0

Views

Author

Seiichi Manyama, Feb 14 2017

Keywords

Crossrefs

Cf. A280869 (E_6^2), A282287 (E_4*E_6^2), A282292 (E_4^2*E_6^2 = E_10^2), A282332 (E_4^3*E_6^2), this sequence (E_4^4*E_6^2).

Programs

  • Mathematica
    terms = 13;
    E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
    E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
    E4[x]^4* E6[x]^2 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)

A282433 Coefficients in q-expansion of E_6^5, where E_6 is the Eisenstein series A013973.

Original entry on oeis.org

1, -2520, 2457000, -1113204960, 199879986600, 4992350445936, -3054519828108000, -316433406335739840, -15444821445342229080, -469944493113793897080, -9973874479528786860432, -158211337782226162119840, -1972932224893221543809760
Offset: 0

Views

Author

Seiichi Manyama, Feb 15 2017

Keywords

Crossrefs

Cf. A282431 (E_2^5), A282015 (E_4^5), this sequence (E_6^5).
Cf. A013973 (E_6), A280869 (E_6^2), A282253 (E_6^3), A282331 (E_6^4), this sequence (E_6^5).

Programs

  • Mathematica
    terms = 13;
    E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
    E6[x]^5 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)

A290010 Coefficients in expansion of 691*E_6^2*E_12.

Original entry on oeis.org

691, -631008, 220745952, -97839374976, 19569814631136, 4535334591238080, 303188772007707264, 10484562664742729472, 226123357637141848800, 3395301924051385082784, 38309171317486687195200, 343029821520447762390144, 2537867756328299498904192
Offset: 0

Views

Author

Seiichi Manyama, Jul 17 2017

Keywords

Crossrefs

Cf. A013973 (E_6), A029828 (691*E_12), A280869 (E_6^2).
Cf. A290009.

Programs

  • Mathematica
    terms = 13;
    E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
    E12[x_] = 1 + (65520/691)*Sum[k^11*x^k/(1 - x^k), {k, 1, terms}];
    691*E6[x]^2*E12[x] + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)

A319134 Expansion of -((25*E_4^4 - 49*E_6^2*E4) + 48*E_6*E_4^2*E_2 + (-49*E_4^3 + 25*E_6^2)*E_2^2)/(3657830400*delta^2) where E_2, E_4, E_6 are the Eisenstein series shown in A006352, A004009, A013973, respectively and delta is A000594.

Original entry on oeis.org

1, 86, 3750, 109672, 2419462, 43021728, 643548464, 8343640624, 95835049605, 991606081332, 9364586280842, 81571540591968, 661034448807902, 5019357866562208, 35927279225314344, 243657157464337888, 1572638456431119570, 9696997279843999470, 57313953586222481126, 325672739267123628976
Offset: 1

Views

Author

Seiichi Manyama, Sep 11 2018

Keywords

Examples

			((25*E_4^4 - 49*E_6^2*E4) + 48*E_6*E_4^2*E_2 + (-49*E_4^3 + 25*E_6^2)*E_2^2)/(delta^2) =  - 3657830400*q - 314573414400*q^2 - 13716864000000*q^3 - 401161575628800*q^4 - ... .
		

Crossrefs

Cf. A000594, A006352 (E_2), A004009 (E_4), A013973 (E_6), A082558, A281373,
About the numerator: A282012 (E_4^4), A282287 (E_6^2*E_4), A282596 (E_6*E_4^2*E_2), A008411 (E_4^3), A280869 (E_6^2), A281374 (E_2^2).

Programs

  • Mathematica
    nmax = 25; E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, nmax + 1}] + O[x]^(nmax + 1); E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, nmax + 1}] + O[x]^(nmax + 1); E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, nmax + 1}] + O[x]^(nmax + 1); Rest[CoefficientList[Series[-((25*E4[x]^4 - 49*E6[x]^2*E4[x]) + 48*E6[x]*E4[x]^2*E2[x] + (-49*E4[x]^3 + 25*E6[x]^2)* E2[x]^2) / (3657830400 * x^2 * QPochhammer[x]^48), {x, 0, nmax}], x]] (* Vaclav Kotesovec, Sep 12 2018 *)

Formula

a(n) ~ exp(4*Pi*sqrt(2*n)) / (132300 * 2^(1/4) * Pi^2 * n^(23/4)). - Vaclav Kotesovec, Sep 12 2018

A282541 Coefficients in q-expansion of E_4^5*E_6^2, where E_4 and E_6 are respectively the Eisenstein series A004009 and A013973.

Original entry on oeis.org

1, 192, -402048, -161431296, 20329262976, 23865942948480, 5794392238723584, 671204645516954112, 41947216018774335360, 1615253348424607402944, 42337765240473386384640, 812656088633074046171904, 12060155362281020231526912
Offset: 0

Views

Author

Seiichi Manyama, Feb 17 2017

Keywords

Crossrefs

Cf. A280869 (E_6^2), A282287 (E_4*E_6^2), A282292 (E_4^2*E_6^2 = E_10^2), A282332 (E_4^3*E_6^2), A282403 (E_4^4*E_6^2), this sequence (E_4^5*E_6^2).

Programs

  • Mathematica
    terms = 13;
    E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
    E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
    E4[x]^5* E6[x]^2 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)
Previous Showing 11-17 of 17 results.