cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A281590 Indices k such that A284896(k-1) and A284896(k) have a different sign.

Original entry on oeis.org

1, 4, 9, 15, 20, 27, 33, 41, 48, 56, 64, 72, 80, 89, 98, 107, 116, 126, 136, 146, 156, 166, 176, 187, 198, 208, 219, 231, 242, 253, 265, 276, 288, 300, 312, 324, 337, 349, 362, 374, 387, 400, 413, 426, 439, 452, 465, 479, 492, 506, 519, 533, 547, 561, 575
Offset: 1

Views

Author

Vaclav Kotesovec, Apr 14 2017

Keywords

Examples

			A284896(8) = 73, A284896(9) = -45, sign is changed, so 9 is in the sequence.
A284896(14) = -66, A284896(15) = 2794, sign is changed, so 15 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    nmax = 1000; A284896 = Rest[CoefficientList[Series[Product[1/(1 + x^k)^(k^2), {k, 1, nmax}], {x, 0, nmax}], x]]; csign = {1}; Do[If[(A284896[[n]] < 0 && A284896[[n+1]] >= 0) || (A284896[[n]] >= 0 && A284896[[n+1]] < 0), csign = Flatten[{csign, n + 1}]], {n, 1, Length[A284896] - 1}]; csign

A281790 Expansion of Product_{k>=1} (1+x^(k^2))^k.

Original entry on oeis.org

1, 1, 0, 0, 2, 2, 0, 0, 1, 4, 3, 0, 0, 6, 6, 0, 4, 7, 6, 3, 8, 8, 6, 6, 4, 21, 20, 4, 1, 34, 34, 2, 8, 23, 44, 28, 19, 18, 54, 54, 18, 56, 65, 46, 25, 100, 94, 38, 42, 85, 169, 107, 56, 69, 226, 194, 62, 111, 194, 241, 125, 215, 246, 258, 207, 283, 437, 292
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 14 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Product[(1+x^(k^2))^k, {k,1,nmax}], {x,0,nmax}], x]
    nmax = 100; s = 1 + x; Do[s*=Sum[Binomial[k, j]*x^(j*k^2), {j, 0, Floor[nmax/k^2] + 1}]; s = Select[Expand[s], Exponent[#, x] <= nmax &];, {k, 2, nmax}]; CoefficientList[s, x]

Formula

a(n) ~ exp(sqrt(n/6)*Pi) / (2^(11/6) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Apr 15 2017

A291649 Expansion of Product_{k>=1} (1 + x^(k^2))^(k^2).

Original entry on oeis.org

1, 1, 0, 0, 4, 4, 0, 0, 6, 15, 9, 0, 4, 40, 36, 0, 17, 71, 90, 36, 64, 100, 180, 144, 96, 274, 394, 300, 148, 740, 820, 480, 472, 1150, 1851, 1341, 1146, 1318, 3880, 3540, 1704, 3017, 6455, 7134, 3780, 7822, 9574, 12180, 10304, 12057, 19750, 22485, 20558, 15910, 43076, 43236, 31104, 33742, 66895
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 28 2017

Keywords

Comments

Number of partitions of n into distinct squares, where k^2 different parts of size k^2 are available (1a, 4a, 4b, 4c, 4d, ...).

Examples

			a(8) = 6 because we have [4a, 4b], [4a, 4c], [4a, 4d], [4b, 4c], [4b, 4d] and [4c, 4d].
		

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Product[(1 + x^k^2)^k^2, {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 100; s = 1 + x; Do[s *= Sum[Binomial[k^2, j]*x^(j*k^2), {j, 0, Floor[nmax/k^2] + 1}]; s = Select[Expand[s], Exponent[#, x] <= nmax &];, {k, 2, nmax}]; CoefficientList[s, x] (* Vaclav Kotesovec, Aug 28 2017 *)

Formula

G.f.: Product_{k>=1} (1 + x^A000290(k))^A000290(k).
a(n) ~ exp(5 * 2^(-9/5) * 3^(-3/5) * (9-4*sqrt(2))^(1/5) * Pi^(1/5) * Zeta(5/2)^(2/5) * n^(3/5)) * 3^(1/5) * (2*sqrt(2)-1)^(1/5) * Zeta(5/2)^(1/5) / (2^(9/10) * sqrt(5) * Pi^(2/5) * n^(7/10)). - Vaclav Kotesovec, Aug 29 2017

A294846 Expansion of Product_{k>=1} 1/(1 + x^k)^(k*(k+1)/2).

Original entry on oeis.org

1, -1, -2, -4, 0, 3, 17, 24, 40, 9, -24, -149, -250, -435, -395, -281, 514, 1528, 3542, 5127, 6920, 5416, 1368, -11136, -28533, -57051, -82846, -107315, -95655, -43646, 107826, 345877, 727771, 1150968, 1601729, 1766547, 1495154, 183944, -2339567, -6770991, -12701854
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 09 2017

Keywords

Comments

Convolution inverse of A028377.
This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = n*(n+1)/2, g(n) = -1. - Seiichi Manyama, Nov 14 2017

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[1/(1 + x^k)^(k (k + 1)/2), {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, -Sum[Sum[(-1)^(k/d + 1) d^2 (d + 1)/2, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 40}]

Formula

G.f.: Product_{k>=1} 1/(1 + x^k)^A000217(k).
a(0) = 1 and a(n) = (1/(2*n)) * Sum_{k=1..n} b(k)*a(n-k) where b(n) = Sum_{d|n} d^2*(d+1)*(-1)^(n/d). - Seiichi Manyama, Nov 14 2017

A284897 Expansion of Product_{k>=1} 1/(1+x^k)^(k^3) in powers of x.

Original entry on oeis.org

1, -1, -7, -20, -8, 99, 455, 958, 715, -3606, -17450, -44157, -61852, 19546, 419786, 1442212, 3084950, 3756436, -2155907, -27112107, -88277693, -187777531, -251308697, -5153980, 1182558343, 4299818445, 9988792754, 16075200671, 12020651310, -29802956283
Offset: 0

Views

Author

Seiichi Manyama, Apr 05 2017

Keywords

Crossrefs

Cf. A248882.
Product_{k>=1} 1/(1+x^k)^(k^m): A081362 (m=0), A255528 (m=1), A284896 (m=2), this sequence (m=3), A284898 (m=4), A284899 (m=5).

Programs

  • Mathematica
    CoefficientList[Series[Product[1/(1 + x^k)^(k^3) , {k, 40}], {x, 0, 40}], x] (* Indranil Ghosh, Apr 05 2017 *)
  • PARI
    x= 'x + O('x^40); Vec(prod(k=1, 40, 1/(1 + x^k)^(k^3))) \\ Indranil Ghosh, Apr 05 2017

Formula

a(0) = 1, a(n) = -(1/n)*Sum_{k=1..n} A284900(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 06 2017

A284898 Expansion of Product_{k>=1} 1/(1+x^k)^(k^4) in powers of x.

Original entry on oeis.org

1, -1, -15, -66, -54, 725, 4580, 12739, 3346, -149076, -791226, -2182124, -1656973, 16553206, 100646954, 318795473, 506196578, -818806580, -9148048880, -36415709566, -87180585636, -70923559814, 484810027389, 2992082912770, 9866919438716, 19936695359140
Offset: 0

Views

Author

Seiichi Manyama, Apr 05 2017

Keywords

Crossrefs

Cf. A248883.
Product_{k>=1} 1/(1+x^k)^(k^m): A081362 (m=0), A255528 (m=1), A284896 (m=2), A284897 (m=3), this sequence (m=4), A284899 (m=5).

Programs

  • Mathematica
    CoefficientList[Series[Product[1/(1 + x^k)^(k^4) , {k, 40}], {x, 0, 40}], x] (* Indranil Ghosh, Apr 05 2017 *)
  • PARI
    x= 'x + O('x^40); Vec(prod(k=1, 40, 1/(1 + x^k)^(k^4))) \\ Indranil Ghosh, Apr 05 2017

Formula

a(0) = 1, a(n) = -(1/n)*Sum_{k=1..n} A284926(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 06 2017

A284899 Expansion of Product_{k>=1} 1/(1+x^k)^(k^5) in powers of x.

Original entry on oeis.org

1, -1, -31, -212, -284, 4935, 43719, 160002, -96747, -4914512, -31358932, -94515285, 97642670, 2823746182, 16834776254, 51617810512, -11233909783, -1137004349695, -7267899354808, -25263858110877, -24537905293857, 319397811973578, 2523465326904492
Offset: 0

Views

Author

Seiichi Manyama, Apr 05 2017

Keywords

Crossrefs

Cf. A248884.
Product_{k>=1} 1/(1+x^k)^(k^m): A081362 (m=0), A255528 (m=1), A284896 (m=2), A284897 (m=3), A284898 (m=4), this sequence (m=5).

Programs

  • Mathematica
    CoefficientList[Series[Product[1/(1 + x^k)^(k^5) , {k, 40}], {x, 0, 40}], x] (* Indranil Ghosh, Apr 05 2017 *)
  • PARI
    x= 'x + O('x^40); Vec(prod(k=1, 40, 1/(1 + x^k)^(k^5))) \\ Indranil Ghosh, Apr 05 2017

Formula

a(0) = 1, a(n) = -(1/n)*Sum_{k=1..n} A284927(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 06 2017

A295086 Expansion of Product_{k>=1} 1/(1 + x^k)^(k*(3*k-1)/2).

Original entry on oeis.org

1, -1, -4, -8, 1, 24, 78, 111, 75, -249, -876, -1847, -2251, -871, 5170, 17052, 34742, 47176, 34576, -44016, -224561, -530104, -875149, -1030871, -475480, 1488315, 5658668, 12109163, 19411024, 22693048, 12926630, -24000623, -102605376, -230257606, -386964449
Offset: 0

Views

Author

Seiichi Manyama, Nov 15 2017

Keywords

Comments

This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = n*(3*n-1)/2, g(n) = -1.

Crossrefs

Cf. A294846 (b=3), A284896 (b=4), this sequence (b=5), A295121 (b=6), A295122 (b=7), A295123 (b=8).

Programs

  • PARI
    N=66; x='x+O('x^N); Vec(1/prod(k=1, N, (1+x^k)^(k*(3*k-1)/2)))

Formula

Convolution inverse of A294102.
G.f.: Product_{k>=1} 1/(1 + x^k)^A000326(k).
a(0) = 1 and a(n) = (1/(2*n)) * Sum_{k=1..n} b(k)*a(n-k) where b(n) = Sum_{d|n} d^2*(3*d-1)*(-1)^(n/d).

A295121 Expansion of Product_{k>=1} 1/(1 + x^k)^(k*(2*k-1)).

Original entry on oeis.org

1, -1, -5, -10, 3, 42, 124, 160, 15, -677, -1941, -3425, -2807, 3488, 21004, 49547, 77879, 63395, -65104, -406091, -988889, -1655508, -1779329, -145347, 5087175, 15405270, 30158849, 42617486, 36116136, -19457047, -161973496, -418712896, -759063566
Offset: 0

Views

Author

Seiichi Manyama, Nov 15 2017

Keywords

Comments

This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = n*(2*n-1), g(n) = -1.

Crossrefs

Cf. A294846 (b=3), A284896 (b=4), A295086 (b=5), this sequence (b=6), A295122 (b=7), A295123 (b=8).

Programs

  • PARI
    N=66; x='x+O('x^N); Vec(1/prod(k=1, N, (1+x^k)^(k*(2*k-1))))

Formula

Convolution inverse of A294836.
G.f.: Product_{k>=1} 1/(1 + x^k)^A000384(k).
a(0) = 1 and a(n) = (1/n) * Sum_{k=1..n} b(k)*a(n-k) where b(n) = Sum_{d|n} d^2*(2*d-1)*(-1)^(n/d).

A295122 Expansion of Product_{k>=1} 1/(1 + x^k)^(k*(5*k-3)/2).

Original entry on oeis.org

1, -1, -6, -12, 6, 65, 179, 202, -137, -1392, -3492, -5135, -1325, 15437, 52934, 101787, 116827, -16945, -462603, -1350732, -2475989, -2889620, -343236, 8559858, 26972213, 53099230, 72521956, 47535918, -86985043, -409729146, -952305325, -1577038736
Offset: 0

Views

Author

Seiichi Manyama, Nov 15 2017

Keywords

Comments

This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = n*(5*n-3)/2, g(n) = -1.

Crossrefs

Cf. A294846 (b=3), A284896 (b=4), A295086 (b=5), A295121 (b=6), this sequence (b=7), A295123 (b=8).

Programs

  • PARI
    N=66; x='x+O('x^N); Vec(1/prod(k=1, N, (1+x^k)^(k*(5*k-3)/2)))

Formula

Convolution inverse of A294837.
G.f.: Product_{k>=1} 1/(1 + x^k)^A000566(k).
a(0) = 1 and a(n) = (1/(2*n)) * Sum_{k=1..n} b(k)*a(n-k) where b(n) = Sum_{d|n} d^2*(5*d-3)*(-1)^(n/d).
Showing 1-10 of 13 results. Next