cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 75 results. Next

A317074 Number of antichains of multisets with multiset-join a strongly normal multiset of size n.

Original entry on oeis.org

1, 1, 3, 13, 148, 7685
Offset: 0

Views

Author

Gus Wiseman, Jul 20 2018

Keywords

Comments

An antichain of multisets is a finite set of finite nonempty multisets, none of which is a submultiset of any other. A multiset is strongly normal if it spans an initial interval of positive integers with weakly decreasing multiplicities. The multiset-join of a multiset system has the same vertices with multiplicities equal to the maxima of the multiplicities in the edges.

Examples

			The a(3) = 13 antichains of multisets:
  (111),
  (112), (11)(12), (2)(11),
  (123), (13)(23), (12)(23), (12)(13), (12)(13)(23), (3)(12), (2)(13), (1)(23), (1)(2)(3).
		

Crossrefs

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    multijoin[mss__]:=Join@@Table[Table[x,{Max[Count[#,x]&/@{mss}]}],{x,Union[mss]}];
    submultisetQ[M_,N_]:=Or[Length[M]==0,MatchQ[{Sort[List@@M],Sort[List@@N]},{{x_,Z___},{_,x_,W___}}/;submultisetQ[{Z},{W}]]];
    strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
    auu[m_]:=Select[stableSets[Union[Rest[Subsets[m]]],submultisetQ],multijoin@@#==m&];
    Table[Length[Join@@Table[auu[m],{m,strnorm[n]}]],{n,5}]

A317616 Numbers whose prime multiplicities are not pairwise indivisible.

Original entry on oeis.org

12, 18, 20, 24, 28, 40, 44, 45, 48, 50, 52, 54, 56, 60, 63, 68, 75, 76, 80, 84, 88, 90, 92, 96, 98, 99, 104, 112, 116, 117, 120, 124, 126, 132, 135, 136, 140, 144, 147, 148, 150, 152, 153, 156, 160, 162, 164, 168, 171, 172, 175, 176, 180, 184, 188, 189, 192
Offset: 1

Views

Author

Gus Wiseman, Aug 01 2018

Keywords

Comments

The numbers of terms that do not exceed 10^k, for k = 2, 3, ..., are 26, 344, 3762, 38711, 390527, 3915874, 39192197, 392025578, 3920580540, ... . Apparently, the asymptotic density of this sequence exists and equals 0.392... . - Amiram Eldar, Sep 25 2024

Examples

			72 = 2^3 * 3^2 is not in the sequence because 3 and 2 are pairwise indivisible.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],!Select[Tuples[Last/@FactorInteger[#],2],And[UnsameQ@@#,Divisible@@#]&]=={}&]
  • PARI
    is(k) = if(k == 1, 0, my(e = Set(factor(k)[,2])); if(vecmax(e) == 1, 0, for(i = 1, #e, for(j = 1, i-1, if(!(e[i] % e[j]), return(1)))); 0)); \\ Amiram Eldar, Sep 25 2024

A303364 Number of strict integer partitions of n with pairwise indivisible and squarefree parts.

Original entry on oeis.org

1, 1, 1, 0, 2, 1, 2, 1, 1, 3, 2, 2, 4, 3, 3, 4, 6, 5, 5, 6, 7, 8, 9, 10, 10, 11, 11, 14, 14, 17, 16, 18, 19, 23, 24, 27, 29, 30, 33, 36, 41, 41, 42, 46, 51, 56, 60, 66, 67, 71, 81, 86, 93, 96, 101, 110, 121, 129, 135, 144, 153, 159, 173, 192, 204, 207, 224
Offset: 1

Views

Author

Gus Wiseman, Apr 22 2018

Keywords

Examples

			The a(23) = 9 strict integer partitions are (23), (13,10), (17,6), (21,2), (10,7,6), (11,7,5), (13,7,3), (11,7,3,2), (13,5,3,2).
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&And@@SquareFreeQ/@#&&Select[Tuples[#,2],UnsameQ@@#&&Divisible@@#&]==={}&]],{n,60}]
  • PARI
    lista(nn)={local(Cache=Map());
      my(excl=vector(nn, n, sumdiv(n, d, 2^(n-d))));
      my(c(n, m, b)=
         if(n==0, 1,
            while(m>n || bittest(b,0), m--; b>>=1);
            my(hk=[n, m, b], z);
            if(!mapisdefined(Cache, hk, &z),
              z = if(m, self()(n, m-1, b>>1) + self()(n-m, m, bitor(b, excl[m])), 0);
              mapput(Cache, hk, z)); z));
      my(a(n)=c(n, n, sum(i=1, n, if(!issquarefree(i), 2^(n-i)))));
      for(n=1, nn, print1(a(n), ", "))
    } \\ Andrew Howroyd, Nov 02 2019

A305253 Number of connected factorizations of n into factors greater than 1 whose distinct factors are pairwise indivisible.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 1
Offset: 1

Views

Author

Gus Wiseman, May 28 2018

Keywords

Comments

Given a finite multiset S of positive integers greater than one, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices with a common divisor greater than 1. For example, G({6,14,15,35}) is a 4-cycle. This sequence counts factorizations S whose distinct factors are pairwise indivisible and such that G(S) is a connected graph.

Examples

			The a(360) = 8 factorizations: (360), (4*90), (10*36), (12*30), (15*24), (18*20), (4*6*15), (6*6*10).
		

Crossrefs

Programs

  • Mathematica
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    sacs[n_]:=Select[facs[n],Function[f,Length[zsm[f]]==1&&Select[Tuples[Union[f],2],UnsameQ@@#&&Divisible@@#&]=={}]]
    Table[Length[sacs[n]],{n,500}]
  • PARI
    is_connected(facs) = { my(siz=length(facs)); if(1==siz,1,my(m=matrix(siz,siz,i,j,(gcd(facs[i],facs[j])!=1))^siz); for(n=1,siz,if(0==vecmin(m[n,]),return(0))); (1)); };
    A305253aux(n, m, facs) = if(1==n, is_connected(Vec(facs)), my(s=0, newfacs); fordiv(n, d, if((d>1)&&(d<=m)&&factorback(apply(x -> (x==d)||(x%d),Vec(facs))), newfacs = List(facs); listput(newfacs,d); s += A305253aux(n/d, d, newfacs))); (s));
    A305253(n) = if(1==n,0,A305253aux(n, n, List([]))); \\ Antti Karttunen, Dec 06 2018

Formula

a(n) <= A305193(n) <= A001055(n). - Antti Karttunen, Dec 06 2018

Extensions

Definition clarified by Gus Wiseman, more terms from Antti Karttunen, Dec 06 2018

A305564 Number of finite sets of relatively prime positive integers with least common multiple n.

Original entry on oeis.org

1, 1, 1, 2, 1, 7, 1, 4, 2, 7, 1, 32, 1, 7, 7, 8, 1, 32, 1, 32, 7, 7, 1, 136, 2, 7, 4, 32, 1, 193, 1, 16, 7, 7, 7, 322, 1, 7, 7, 136, 1, 193, 1, 32, 32, 7, 1, 560, 2, 32, 7, 32, 1, 136, 7, 136, 7, 7, 1, 3464, 1, 7, 32, 32, 7, 193, 1, 32, 7, 193, 1, 2852, 1, 7
Offset: 1

Views

Author

Gus Wiseman, Jun 05 2018

Keywords

Examples

			The a(6) = 7 sets are {1,6}, {2,3}, {1,2,3}, {1,2,6}, {1,3,6}, {2,3,6}, {1,2,3,6}.
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Rest[Subsets[Divisors[n]]],And[GCD@@#==1,LCM@@#==n]&]],{n,100}]

A305565 Regular triangle where T(n,k) is the number of finite sets of positive integers with least common multiple n and greatest common divisor k.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 2, 1, 0, 1, 1, 0, 0, 0, 1, 7, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 4, 2, 0, 1, 0, 0, 0, 1, 2, 0, 1, 0, 0, 0, 0, 0, 1, 7, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 32, 7, 2, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Jun 05 2018

Keywords

Examples

			The T(12,2) = 7 sets are {2,12}, {4,6}, {2,4,6}, {2,4,12}, {2,6,12}, {4,6,12}, {2,4,6,12}.
Triangle begins:
   1
   1  1
   1  0  1
   2  1  0  1
   1  0  0  0  1
   7  1  1  0  0  1
   1  0  0  0  0  0  1
   4  2  0  1  0  0  0  1
   2  0  1  0  0  0  0  0  1
   7  1  0  0  1  0  0  0  0  1
   1  0  0  0  0  0  0  0  0  0  1
  32  7  2  1  0  1  0  0  0  0  0  1
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Subsets[Divisors[n]],And[GCD@@#==k,LCM@@#==n]&]],{n,20},{k,n}]

Formula

If k divides n then T(n,k) = T(n/k,1) = A305564(n/k); otherwise T(n,k) = 0.

A316438 Heinz numbers of integer partitions whose product is strictly greater than the LCM of the parts.

Original entry on oeis.org

9, 18, 21, 25, 27, 36, 39, 42, 45, 49, 50, 54, 57, 63, 65, 72, 75, 78, 81, 84, 87, 90, 91, 98, 99, 100, 105, 108, 111, 114, 115, 117, 121, 125, 126, 129, 130, 133, 135, 144, 147, 150, 153, 156, 159, 162, 168, 169, 171, 174, 175, 180, 182, 183, 185, 189, 195
Offset: 1

Views

Author

Gus Wiseman, Jul 03 2018

Keywords

Comments

Also numbers n > 1 such that A290104(n) > 1.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			Sequence of partitions whose product is greater than their LCM begins: (22), (221), (42), (33), (222), (2211), (62), (421), (322), (44), (331), (2221), (82), (422), (63), (22111), (332), (621), (2222), (4211).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2,300],With[{pms=Flatten[Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]},Times@@pms/LCM@@pms>1]&]

A317079 Number of unlabeled antichains of multisets with multiset-join a multiset of size n.

Original entry on oeis.org

1, 1, 3, 9, 46, 450
Offset: 0

Views

Author

Gus Wiseman, Jul 20 2018

Keywords

Comments

An antichain of multisets is a finite set of finite nonempty multisets, none of which is a submultiset of any other. The multiset-join of a multiset system has the same vertices with multiplicities equal to the maxima of the multiplicities in the edges.

Examples

			Non-isomorphic representatives of the a(3) = 9 antichains of multisets:
  (111),
  (122), (1)(22), (12)(22),
  (123), (1)(23), (13)(23), (1)(2)(3), (12)(13)(23).
		

Crossrefs

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    multijoin[mss__]:=Join@@Table[Table[x,{Max[Count[#,x]&/@{mss}]}],{x,Union[mss]}]
    submultisetQ[M_,N_]:=Or[Length[M]==0,MatchQ[{Sort[List@@M],Sort[List@@N]},{{x_,Z___},{_,x_,W___}}/;submultisetQ[{Z},{W}]]];
    strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
    auu[m_]:=Select[stableSets[Union[Rest[Subsets[m]]],submultisetQ],multijoin@@#==m&];
    sysnorm[m_]:=First[Sort[sysnorm[m,1]]];sysnorm[m_,aft_]:=If[Length[Union@@m]<=aft,{m},With[{mx=Table[Count[m,i,{2}],{i,Select[Union@@m,#>=aft&]}]},Union@@(sysnorm[#,aft+1]&/@Union[Table[Map[Sort,m/.{par+aft-1->aft,aft->par+aft-1},{0,1}],{par,First/@Position[mx,Max[mx]]}]])]];
    Table[Length[Union[sysnorm/@Join@@Table[auu[m],{m,strnorm[n]}]]],{n,5}]

A320799 Number of non-isomorphic (not necessarily strict) antichains of multisets of weight n with no singletons or leaves (vertices that appear only once).

Original entry on oeis.org

1, 0, 1, 1, 5, 4, 22, 27, 107, 212, 689
Offset: 0

Views

Author

Gus Wiseman, Nov 02 2018

Keywords

Comments

The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(2) = 1 through a(7) = 27 multiset partitions:
  {{11}}  {{111}}  {{1111}}    {{11111}}    {{111111}}      {{1111111}}
                   {{1122}}    {{11222}}    {{111222}}      {{1112222}}
                   {{11}{11}}  {{11}{122}}  {{112222}}      {{1122222}}
                   {{11}{22}}  {{11}{222}}  {{112233}}      {{1122333}}
                   {{12}{12}}               {{111}{111}}    {{111}{1222}}
                                            {{11}{1222}}    {{11}{12222}}
                                            {{111}{222}}    {{111}{2222}}
                                            {{112}{122}}    {{11}{12233}}
                                            {{11}{2222}}    {{111}{2233}}
                                            {{112}{222}}    {{112}{1222}}
                                            {{11}{2233}}    {{11}{22222}}
                                            {{112}{233}}    {{112}{2222}}
                                            {{122}{122}}    {{11}{22333}}
                                            {{123}{123}}    {{112}{2333}}
                                            {{11}{11}{11}}  {{113}{2233}}
                                            {{11}{12}{22}}  {{122}{1233}}
                                            {{11}{22}{22}}  {{222}{1122}}
                                            {{11}{22}{33}}  {{11}{11}{122}}
                                            {{11}{23}{23}}  {{11}{11}{222}}
                                            {{12}{12}{12}}  {{11}{12}{222}}
                                            {{12}{12}{22}}  {{11}{12}{233}}
                                            {{12}{13}{23}}  {{11}{22}{233}}
                                                            {{11}{22}{333}}
                                                            {{12}{12}{222}}
                                                            {{12}{12}{233}}
                                                            {{12}{12}{333}}
                                                            {{12}{13}{233}}
		

Crossrefs

A333492 Position of first appearance of n in A271410 (LCM of binary indices).

Original entry on oeis.org

1, 2, 4, 8, 16, 6, 64, 128, 256, 18, 1024, 12, 4096, 66, 20, 32768, 65536, 258, 262144, 24, 68, 1026, 4194304, 132, 16777216, 4098, 67108864, 72, 268435456, 22, 1073741824, 2147483648, 1028, 65538, 80, 264, 68719476736, 262146, 4100, 144, 1099511627776, 70, 4398046511104
Offset: 1

Views

Author

Gus Wiseman, Mar 28 2020

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.

Examples

			The sequence together with the corresponding binary expansions and binary indices begins:
      1:                 1 ~ {1}
      2:                10 ~ {2}
      4:               100 ~ {3}
      8:              1000 ~ {4}
     16:             10000 ~ {5}
      6:               110 ~ {2,3}
     64:           1000000 ~ {7}
    128:          10000000 ~ {8}
    256:         100000000 ~ {9}
     18:             10010 ~ {2,5}
   1024:       10000000000 ~ {11}
     12:              1100 ~ {3,4}
   4096:     1000000000000 ~ {13}
     66:           1000010 ~ {2,7}
     20:             10100 ~ {3,5}
  32768:  1000000000000000 ~ {16}
  65536: 10000000000000000 ~ {17}
    258:         100000010 ~ {2,9}
		

Crossrefs

The version for prime indices is A330225.
The version for standard compositions is A333225.
Let q(k) be the binary indices of k:
- The sum of q(k) is A029931(k).
- The elements of q(k) are row k of A048793.
- The product of q(k) is A096111(k).
- The LCM of q(k) is A271410(k).
- The GCD of q(k) is A326674(k).
GCD of prime indices is A289508.
LCM of prime indices is A290103.
LCM of standard compositions is A333226.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    q=Table[LCM@@bpe[n],{n,10000}];
    Table[Position[q,i][[1,1]],{i,First[Split[Union[q],#1+1==#2&]]}]

Extensions

Terms a(23) and beyond from Giovanni Resta, Mar 29 2020
Previous Showing 51-60 of 75 results. Next