A286783
Triangle T(n,k) read by rows: coefficients of polynomials P_n(t) defined in Formula section.
Original entry on oeis.org
1, 3, 15, 5, 105, 77, 7, 945, 1044, 234, 9, 10395, 14784, 5390, 550, 11, 135135, 227877, 113126, 19760, 1105, 13, 2027025, 3862305, 2371845, 586425, 58275, 1995, 15, 34459425, 71983440, 51607716, 16271380, 2356234, 147560, 3332, 17, 654729075, 1469813400, 1185214452, 446964322, 84487110, 7888876, 333564, 5244, 19, 13749310575, 32718512925, 28937407212, 12516198870, 2884205268, 358182846, 23006928, 690480, 7875, 21
Offset: 0
A(x;t) = 1 + 3*x + (15 + 5*t)*x^2 + (105 + 77*t + 7*t^2)*x^3 + ...
Triangle starts:
n\k [0] [1] [2] [3] [4] [5] [6] [7]
[0] 1;
[1] 3;
[2] 15, 5;
[3] 105, 77, 7;
[4] 945, 1044, 234, 9;
[5] 10395, 14784, 5390, 550, 11;
[6] 135135, 227877, 113126, 19760, 1105, 13;
[7] 2027025, 3862305, 2371845, 586425, 58275, 1995, 15;
[8] 34459425, 71983440, 51607716, 16271380, 2356234, 147560, 3332, 17;
[9] ...
-
max = 11; y0[x_, t_] = 1; y1[x_, t_] = 0; For[n = 1, n <= max, n++, y1[x_, t_] = (1 + x*y0[x, t] + 2*x^2*D[y0[x, t], x])*(1 - x*y0[x, t]*(1 - t))/(1 - x*y0[x, t])^2 + O[x]^n // Normal; y0[x_, t_] = y1[x, t] // Simplify];
s = y0[x, t];
se = (1 + x*s + 2*x^2*D[s, x])/(1 - x*s)^2 + O[x]^max // Normal;
row[n_] := row[n] = CoefficientList[Coefficient[se, x, n], t];
T[0, 0] = 1; T[n_, k_] := row[n][[k + 1]];
Table[T[n, k], {n, 0, max-1}, {k, 0, If[n == 0, 0, n-1]}] // Flatten (* Jean-François Alcover, May 19 2017, adapted from PARI *)
-
A286781_ser(N,t='t) = {
my(x='x+O('x^N), y0=1+O('x^N), y1=0, n=1);
while(n++,
y1 = (1 + x*y0 + 2*x^2*y0')*(1 - x*y0*(1-t))/(1-x*y0)^2;
if (y1 == y0, break()); y0 = y1;);
y0;
};
A286783_ser(N,t='t) = {
my(s=A286781_ser(N,t)); (1 + x*s + 2*x^2*deriv(s,'x))/(1-x*s)^2;
};
concat(apply(p->Vecrev(p), Vec(A286783_ser(10))))
A286784
Triangle T(n,k) read by rows: coefficients of polynomials P_n(t) defined in Formula section.
Original entry on oeis.org
1, 1, 1, 2, 4, 1, 5, 15, 9, 1, 14, 56, 56, 16, 1, 42, 210, 300, 150, 25, 1, 132, 792, 1485, 1100, 330, 36, 1, 429, 3003, 7007, 7007, 3185, 637, 49, 1, 1430, 11440, 32032, 40768, 25480, 7840, 1120, 64, 1, 4862, 43758, 143208, 222768, 179928, 77112, 17136, 1836, 81, 1, 16796, 167960, 629850, 1162800, 1162800, 651168, 203490, 34200, 2850, 100, 1
Offset: 0
A(x;t) = 1 + (1 + t)*x + (2 + 4*t + t^2)*x^2 + (5 + 15*t + 9*t^2 + t^3)*x^3 + ...
Triangle starts:
n\k [0] [1] [2] [3] [4] [5] [6] [7] [8] [9]
[0] 1;
[1] 1, 1;
[2] 2, 4, 1;
[3] 5, 15, 9, 1;
[4] 14, 56, 56, 16, 1;
[5] 42, 210, 300, 150, 25, 1;
[6] 132, 792, 1485, 1100, 330, 36, 1;
[7] 429, 3003, 7007, 7007, 3185, 637, 49, 1;
[8] 1430, 11440, 32032, 40768, 25480, 7840, 1120, 64, 1;
[9] 4862, 43758, 143208, 222768, 179928, 77112, 17136, 1836, 81, 1;
[10] ...
-
/* As triangle */ [[(Binomial(2*n, n+m)*Binomial(n+1, m))/(n+1): m in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Sep 23 2018
-
Flatten@Table[Binomial[2 n, n + m] Binomial[n + 1, m] / (n + 1), {n, 0, 10}, {m, 0, n}] (* Vincenzo Librandi, Sep 23 2018 *)
-
T(n,m):=(binomial(2*n,n+m)*binomial(n+1,m))/(n+1); /* Vladimir Kruchinin, Sep 23 2018 */
-
A286784_ser(N,t='t) = my(x='x+O('x^N)); serreverse(Ser(x*(1-x)^2/(1+(t-1)*x)))/x;
concat(apply(p->Vecrev(p), Vec(A286784_ser(12))))
\\ test: y=A286784_ser(50); y*(1-x*y)^2 == 1 + ('t-1)*x*y
A286785
Triangle T(n,k) read by rows: coefficients of polynomials P_n(t) defined in Formula section.
Original entry on oeis.org
1, 2, 5, 2, 14, 14, 2, 42, 72, 27, 2, 132, 330, 220, 44, 2, 429, 1430, 1430, 520, 65, 2, 1430, 6006, 8190, 4550, 1050, 90, 2, 4862, 24752, 43316, 33320, 11900, 1904, 119, 2, 16796, 100776, 217056, 217056, 108528, 27132, 3192, 152, 2, 58786, 406980, 1046520, 1302336, 854658, 301644, 55860, 5040, 189, 2, 208012, 1634380, 4903140, 7354710, 6056820, 2826516, 743820, 106260, 7590, 230, 2
Offset: 0
A(x;t) = 1 + 2*x + (5 + 2*t)*x^2 + (14 + 14*t + 2*t^2)*x^3 + ...
Triangle starts:
n\k | 0 1 2 3 4 5 6 7 8
-----+-----------------------------------------------------------
0 | 1;
1 | 2;
2 | 5, 2;
3 | 14, 14, 2;
4 | 42, 72, 27, 2;
5 | 132, 330, 220, 44, 2;
6 | 429, 1430, 1430, 520, 65, 2;
7 | 1430, 6006, 8190, 4550, 1050, 90, 2;
8 | 4862, 24752, 43316, 33320, 11900, 1904, 119, 2;
9 | 16796, 100776, 217056, 217056, 108528, 27132, 3192, 152, 2;
-
T(n,k):=(binomial(n-1,k)*binomial(2*(n+1),n-k))/(n+1); /* Vladimir Kruchinin, Jan 14 2022 */
-
A286784_ser(N,t='t) = my(x='x+O('x^N)); serreverse(Ser(x*(1-x)^2/(1+(t-1)*x)))/x;
A286785_ser(N,t='t) = 1/(1-x*A286784_ser(N,t))^2;
concat(apply(p->Vecrev(p), Vec(A286785_ser(12))))
A286795
Triangle T(n,k) read by rows: coefficients of polynomials P_n(t) defined in Formula section.
Original entry on oeis.org
1, 1, 4, 3, 27, 31, 5, 248, 357, 117, 7, 2830, 4742, 2218, 314, 9, 38232, 71698, 42046, 9258, 690, 11, 593859, 1216251, 837639, 243987, 30057, 1329, 13, 10401712, 22877725, 17798029, 6314177, 1071809, 81963, 2331, 15, 202601898, 472751962, 404979234, 166620434, 35456432, 3857904, 196532, 3812, 17, 4342263000, 10651493718, 9869474106, 4561150162, 1149976242, 160594860, 11946360, 426852, 5904, 19
Offset: 0
A(x;t) = 1 + x + (4 + 3*t)*x^2 + (27 + 31*t + 5*t^2)*x^3 + ...
Triangle starts:
n\k [0] [1] [2] [3] [4] [5] [6] [7]
[0] 1;
[1] 1;
[2] 4, 3;
[3] 27, 31, 5;
[4] 248, 357, 117, 7;
[5] 2830, 4742, 2218, 314, 9;
[6] 38232, 71698, 42046, 9258, 690, 11;
[7] 593859, 1216251, 837639, 243987, 30057, 1329, 13;
[8] 10401712, 22877725, 17798029, 6314177, 1071809, 81963, 2331, 15;
[9] ...
-
max = 11; y0[x_, t_] = 1; y1[x_, t_] = 0; For[n = 1, n <= max, n++, y1[x_, t_] = ((1 + x*(1 + 2 t + x t^2) y0[x, t]^2 + t (1 - t)*x^2*y0[x, t]^3 + 2 x^2 y0[x, t] D[y0[x, t], x]))/(1 + 2 x*t) + O[x]^n // Normal; y0[x_, t_] = y1[x, t]];
row[n_] := CoefficientList[Coefficient[y0[x, t], x, n], t];
Table[row[n], {n, 0, max - 1}] // Flatten (* Jean-François Alcover, May 23 2017, adapted from PARI *)
-
A286795_ser(N, t='t) = {
my(x='x+O('x^N), y0=1, y1=0, n=1);
while(n++,
y1 = (1 + x*(1 + 2*t + x*t^2)*y0^2 + t*(1-t)*x^2*y0^3 + 2*x^2*y0*y0');
y1 = y1 / (1+2*x*t); if (y1 == y0, break()); y0 = y1;); y0;
};
concat(apply(p->Vecrev(p), Vec(A286795_ser(11))))
\\ test: y=A286795_ser(50); 0 == 1 - (1 + 2*x*t)*y + x*(1 + 2*t + x*t^2)*y^2 + t*(1-t)*x^2*y^3 + 2*x^2*y*y'
A286798
Triangle T(n,k) read by rows: coefficients of polynomials P_n(t) defined in Formula section. .
Original entry on oeis.org
1, 1, 4, 2, 27, 22, 248, 264, 30, 2830, 3610, 830, 8, 38232, 55768, 18746, 1078, 593859, 961740, 414720, 46986, 576, 10401712, 18326976, 9457788, 1593664, 62682, 112, 202601898, 382706674, 226526362, 49941310, 3569882, 45296, 4342263000, 8697475368, 5740088706, 1540965514, 160998750, 4909674, 16896, 101551822350, 213865372020, 154271354280, 48205014786, 6580808784, 337737294, 4200032, 2560
Offset: 0
A(x;t) = 1 + x + (4 + 2*t)*x^2 + (27 + 22*t)*x^3 + (248 + 264*t + 30*t^2)*x^4 +
Triangle starts:
n\k [0] [1] [2] [3] [4] [5]
[0] 1;
[1] 1;
[2] 4, 2;
[3] 27, 22;
[4] 248, 264, 30;
[5] 2830, 3610, 830, 8;
[6] 38232, 55768, 18746, 1078;
[7] 593859, 961740, 414720, 46986, 576;
[8] 10401712, 18326976, 9457788, 1593664, 62682, 112;
[9] 202601898, 382706674, 226526362, 49941310, 3569882, 45296;
[10] ...
-
max = 12; y0[x_, t_] = 1; y1[x_, t_] = 0; For[n = 1, n <= max, n++, y1[x_, t_] = 1 + x y0[x, t]^2 + 3 t x^3 y0[x, t]^2 D[y0[x, t], x] + x^2 (2 y0[x, t] D[y0[x, t], x] + t (2 y0[x, t]^3 - D[y0[x, t], x] + y0[x, t] D[y0[x, t], x])) + O[x]^n // Normal // Simplify; y0[x_, t_] = y1[x, t]];
P[n_, t_] := Coefficient[y0[x, t] , x, n];
row[n_] := CoefficientList[P[n, t], t];
Table[row[n], {n, 0, max}] // Flatten (* Jean-François Alcover, May 24 2017, adapted from PARI *)
-
A286795_ser(N, t='t) = {
my(x='x+O('x^N), y0=1, y1=0, n=1);
while(n++,
y1 = (1 + x*(1 + 2*t + x*t^2)*y0^2 + t*(1-t)*x^2*y0^3 + 2*x^2*y0*y0');
y1 = y1 / (1+2*x*t); if (y1 == y0, break()); y0 = y1;); y0;
};
A286798_ser(N,t='t) = {
my(v = A286795_ser(N,t)); subst(v, 'x, serreverse(x/(1-x*t*v)));
};
concat(apply(p->Vecrev(p), Vec(A286798_ser(12))))
\\ test: y=A286798_ser(50); x^2*y' == (1 - y + x*y^2 + 2*x^2*t*y^3)/(t - (2+t)*y - 3*x*t*y^2)
A286800
Triangle T(n,k) read by rows: coefficients of polynomials P_n(t) defined in Formula section.
Original entry on oeis.org
1, 1, 2, 7, 6, 63, 74, 10, 729, 974, 254, 8, 10113, 15084, 5376, 406, 161935, 264724, 117424, 14954, 320, 2923135, 5163276, 2697804, 481222, 23670, 112, 58547761, 110483028, 65662932, 14892090, 1186362, 21936, 1286468225, 2570021310, 1695874928, 461501018, 51034896, 1866986, 11264, 30747331223, 64547199082, 46461697760, 14603254902, 2055851560, 116329886, 1905888, 2560
Offset: 1
A(x;t) = x + (1 + 2*t)*x^2 + (7 + 6*t)*x^3 + (63 + 74*t + 10*t^2)*x^4 + ...
Triangle starts:
n\k [0] [1] [2] [3] [4] [5]
[1] 1;
[2] 1, 2;
[3] 7, 6;
[4] 63, 74, 10;
[5] 729, 974, 254, 8;
[6] 10113, 15084, 5376, 406;
[7] 161935, 264724, 117424, 14954, 320;
[8] 2923135, 5163276, 2697804, 481222, 23670, 112;
[9] 58547761, 110483028, 65662932, 14892090, 1186362, 21936;
[10] ...
-
max = 12; y0[0, ] = y1[0, ] = 0; y0[x_, t_] = x; y1[x_, t_] = 0; For[n = 1, n <= max, n++, y1[x_, t_] = Normal[(1/(-1 + y0[x, t]))*x*(-1 - y0[x, t]^2 - 2*y0[x, t]*(-1 + D[y0[x, t], x]) + t*x*(-1 + y0[x, t])*(2*(-1 + y0[x, t])^2 + (x*(-1 + y0[x, t]) + y0[x, t])*D[y0[x, t], x])) + O[x]^n]; y0[x_, t_] = y1[x, t]];
row[n_] := CoefficientList[SeriesCoefficient[y0[x, t], {x, 0, n}], t];
Flatten[Table[row[n], {n, 0, max-1}]] (* Jean-François Alcover, May 24 2017, adapted from PARI *)
-
A286795_ser(N, t='t) = {
my(x='x+O('x^N), y0=1, y1=0, n=1);
while(n++,
y1 = (1 + x*(1 + 2*t + x*t^2)*y0^2 + t*(1-t)*x^2*y0^3 + 2*x^2*y0*y0');
y1 = y1 / (1+2*x*t); if (y1 == y0, break()); y0 = y1;); y0;
};
A286798_ser(N,t='t) = {
my(v = A286795_ser(N,t)); subst(v, 'x, serreverse(x/(1-x*t*v)));
};
A286800_ser(N, t='t) = {
my(v = A286798_ser(N,t)); 1-1/subst(v, 'x, serreverse(x*v^2));
};
concat(apply(p->Vecrev(p), Vec(A286800_ser(12))))
\\ test: y=A286800_ser(50); x*y' == (1-y) * (2*t*x^2*(1-y)^2 + x*(1-y) - y) / (t*x^2*(1-y)^2 - t*x*y*(1-y) - 2*y)
A286796
Triangle T(n,k) read by rows: coefficients of polynomials P_n(t) defined in Formula section.
Original entry on oeis.org
1, 1, 1, 4, 5, 1, 27, 40, 14, 1, 248, 419, 200, 30, 1, 2830, 5308, 3124, 700, 55, 1, 38232, 78070, 53620, 15652, 1960, 91, 1, 593859, 1301088, 1007292, 356048, 60550, 4704, 140, 1, 10401712, 24177939, 20604768, 8430844, 1787280, 194854, 10080, 204, 1, 202601898, 495263284, 456715752, 209878440, 52619854, 7322172, 545908, 19800, 285, 1, 4342263000, 11085720018, 10921213644, 5516785032, 1579263840, 264576774, 25677652, 1372228, 36300, 385, 1
Offset: 0
A(x;t) = 1 + (1 + t)*x + (4 + 5*t + t^2)*x^2 + (27 + 40*t + 14*t^2 + t^3)*x^3 + ...
Triangle starts:
n\k [0] [1] [2] [3] [4] [5] [6] [7] [8]
[0] 1;
[1] 1; 1;
[2] 4, 5, 1;
[3] 27, 40, 14, 1;
[4] 248, 419, 200, 30, 1;
[5] 2830, 5308, 3124, 700, 55, 1;
[6] 38232, 78070, 53620, 15652, 1960, 91, 1;
[7] 593859, 1301088, 1007292, 356048, 60550, 4704, 140, 1;
[8] 10401712, 24177939, 20604768, 8430844, 1787280, 194854, 10080, 204, 1;
[9] ...
-
max = 11; y0[x_, t_] = 1; y1[x_, t_] = 0; For[n = 1, n <= max, n++, y1[x_, t_] = Normal[(1 + x*(1 + 2*t + x*t^2)*y0[x, t]^2 + t*(1 - t)*x^2*y0[x, t]^3 + 2*x^2*y0[x, t]*D[y0[x, t], x])/(1 + 2*x*t) + O[x]^n]; y0[x_, t_] = y1[x, t]];
row[n_] := CoefficientList[SeriesCoefficient[y0[x, t]/(1 - x*t*y0[x, t]), {x, 0, n}], t];
Flatten[Table[row[n], {n, 0, max-1}]] (* Jean-François Alcover, May 23 2017, adapted from PARI *)
-
A286795_ser(N, t='t) = {
my(x='x+O('x^N), y0=1, y1=0, n=1);
while(n++,
y1 = (1 + x*(1 + 2*t + x*t^2)*y0^2 + t*(1-t)*x^2*y0^3 + 2*x^2*y0*y0');
y1 = y1 / (1+2*x*t); if (y1 == y0, break()); y0 = y1;); y0;
};
A286796_ser(N,t='t) = my(v=A286795_ser(N,t)); v/(1-x*t*v);
concat(apply(p->Vecrev(p), Vec(A286796_ser(11))))
Comments