A289567
Coefficients in expansion of 1/E_6^(1/2).
Original entry on oeis.org
1, 252, 103572, 46355904, 21754545876, 10493652271032, 5153897870227008, 2563741466120209536, 1287429765611338091988, 651251466581383330576956, 331360676706818772917367912, 169399388595923901462013678656
Offset: 0
E_6^(k/12):
A289570 (k=-18),
A000706 (k=-12), this sequence (k=-6),
A109817 (k=1),
A289325 (k=2),
A289326 (k=3),
A289327 (k=4),
A289328 (k=5),
A289293 (k=6),
A289345 (k=7),
A289346 (k=8),
A289347 (k=9),
A289348 (k=10),
A289349 (k=11).
-
nmax = 20; CoefficientList[Series[(1 - 504*Sum[DivisorSigma[5,k]*x^k, {k, 1, nmax}])^(-1/2), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 09 2017 *)
A289637
Coefficients in expansion of -q*E'_6/E_6 where E_6 is the Eisenstein Series (A013973).
Original entry on oeis.org
504, 287280, 153540576, 82226602080, 44031499226064, 23578504122108096, 12626092121367162816, 6761166974864088760512, 3620548496603402008959384, 1938773508354916749345180960, 1038197035676506069321210300320
Offset: 1
-
nmax = 20; Rest[CoefficientList[Series[504*x*Sum[k*DivisorSigma[5, k]*x^(k-1), {k, 1, nmax}]/(1 - 504*Sum[DivisorSigma[5, k]*x^k, {k, 1, nmax}]), {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jul 09 2017 *)
A288990
Define the exponents b(1), b(2), ... such that E_12 is equal to (1-q)^b(1) (1-q^2)^b(2) (1-q^3)^b(3) ... . a(n) = b(n) * A288989(n).
Original entry on oeis.org
-65520, -90598009320, 442356959924880, 4181653887366701917080, -42458488603945952980072176, -254774947034575235293755006524520, 3880639008647135220484579615019041680, 17460929863645555627595091312548802016985880
Offset: 1
b(1) = 24 + 1/1 * A008683(1/1) * A288472(1)/A288989(1) = 24 + 1/1 * (-82104/691) = -65520/691,
b(2) = 24 + 1/2 * (A008683(2/1) * A288472(1)/A288989(1) + A008683(2/2) * A288472(2)/A288989(2)) = 24 + 1/2 * (82104/691 - 181275671592/477481) = -90598009320/477481.
A289570
Coefficients in expansion of 1/E_6^(3/2).
Original entry on oeis.org
1, 756, 501228, 311671584, 187266950892, 110121960638088, 63808586297102304, 36578013578688141504, 20797655630223547290348, 11749541312124028845092052, 6603568491137827506152966712, 3695593478842608407829235523808
Offset: 0
E_6^(k/12): this sequence (k=-18),
A000706 (k=-12),
A289567 (k=-6),
A109817 (k=1),
A289325 (k=2),
A289326 (k=3),
A289327 (k=4),
A289328 (k=5),
A289293 (k=6),
A289345 (k=7),
A289346 (k=8),
A289347 (k=9),
A289348 (k=10),
A289349 (k=11).
-
nmax = 20; CoefficientList[Series[(1 - 504*Sum[DivisorSigma[5,k]*x^k, {k, 1, nmax}])^(-3/2), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 09 2017 *)
A289540
Coefficients in expansion of 1/E_6^(1/12).
Original entry on oeis.org
1, 42, 12852, 4780104, 1974512526, 863778376440, 391960077239304, 182430901827757632, 86505196617272556900, 41607881477457256661154, 20239469012268054187498440, 9935363620927698868439915544, 4914082482014906612773260362232
Offset: 0
E_6^(k/12):
A289570 (k=-18),
A000706 (k=-12),
A289567 (k=-6), this sequence (k=-1),
A109817 (k=1),
A289325 (k=2),
A289326 (k=3),
A289327 (k=4),
A289328 (k=5),
A289293 (k=6),
A289345 (k=7),
A289346 (k=8),
A289347 (k=9),
A289348 (k=10),
A289349 (k=11).
-
nmax = 20; CoefficientList[Series[(1 - 504*Sum[DivisorSigma[5,k]*x^k, {k, 1, nmax}])^(-1/12), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 26 2017 *)