cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 105 results. Next

A304712 Number of integer partitions of n whose parts are all equal or whose distinct parts are pairwise coprime.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 10, 14, 19, 25, 32, 43, 54, 70, 86, 105, 130, 162, 196, 240, 286, 339, 405, 485, 573, 674, 790, 922, 1072, 1252, 1456, 1685, 1939, 2226, 2557, 2923, 3349, 3822, 4347, 4931, 5593, 6335, 7170, 8092, 9105, 10233, 11495, 12903, 14458, 16169, 18063
Offset: 0

Views

Author

Gus Wiseman, May 17 2018

Keywords

Comments

Two parts are coprime if they have no common divisor greater than 1.

Examples

			The a(6) = 10 partitions whose parts are all equal or whose distinct parts are pairwise coprime are (6), (51), (411), (33), (321), (3111), (222), (2211), (21111), (111111).
		

Crossrefs

Programs

  • Maple
    g:= proc(n, i, s) `if`(n=0, 1, `if`(i<1, 0,
          b(n, i, select(x-> x<=i, s))))
        end:
    b:= proc(n, i, s) option remember; g(n, i-1, s)+(f->
         `if`(f intersect s={}, add(g(n-i*j, i-1, s union f)
            , j=1..n/i), 0))(numtheory[factorset](i))
        end:
    a:= n-> g(n$2, {}):
    seq(a(n), n=0..60);  # Alois P. Heinz, May 17 2018
  • Mathematica
    Table[Select[IntegerPartitions[n],Or[SameQ@@#,CoprimeQ@@Union[#]]&]//Length,{n,20}]
    (* Second program: *)
    g[n_, i_, s_] := If[n == 0, 1, If[i < 1, 0, b[n, i, Select[s, # <= i &]]]];
    b[n_, i_, s_] := b[n, i, s] = g[n, i - 1, s] + Function[f,
         If[f ~Intersection~ s == {}, Sum[g[n - i*j, i - 1, s ~Union~ f],
         {j, 1, n/i}], 0]][FactorInteger[i][[All, 1]]];
    a[n_] := g[n, n, {}];
    a /@ Range[0, 60] (* Jean-François Alcover, May 10 2021, after Alois P. Heinz *)

A305732 Heinz numbers of reducible integer partitions. Numbers n > 1 that are prime or whose prime indices are relatively prime and such that A181819(n) is already in the sequence.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 26, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 64, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78
Offset: 1

Views

Author

Gus Wiseman, Jun 22 2018

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). A prime index of n is a number m such that prime(m) divides n. A multiset m whose distinct elements are m_1, m_2, ..., m_k with multiplicities y_1, y_2, ..., y_k is reducible if either m is of size 1 or gcd(m_1,...,m_k) = 1 and the multiset {y_1,...,y_k} is also reducible.

Examples

			60 has relatively prime prime indices {1,1,2,3} with multiplicities {1,1,2} corresponding to A181819(90) = 12. 12 has relatively prime prime indices {1,1,2} with multiplicities {1,2} corresponding to A181819(12) = 6. 6 has relatively prime prime indices {1,2} with multiplicities {1,1} corresponding to A181819(6) = 4. 4 has relatively prime prime indices {1,1} with multiplicities {2} corresponding to A181819(4) = 3. 3 is prime, so we conclude that 60 belongs to the sequence.
		

Crossrefs

Programs

  • Mathematica
    rdzQ[n_]:=And[n>1,Or[PrimeQ[n],And[rdzQ[Times@@Prime/@FactorInteger[n][[All,2]]],GCD@@PrimePi/@FactorInteger[n][[All,1]]==1]]];
    Select[Range[50],rdzQ]

A319055 Maximum product of an integer partition of n with relatively prime parts.

Original entry on oeis.org

1, 1, 2, 3, 6, 6, 12, 18, 24, 36, 54, 72, 108, 162, 216, 324, 486, 648, 972, 1458, 1944, 2916, 4374, 5832, 8748, 13122, 17496, 26244, 39366, 52488, 78732, 118098, 157464, 236196, 354294, 472392, 708588, 1062882, 1417176, 2125764, 3188646, 4251528, 6377292
Offset: 1

Views

Author

Gus Wiseman, Sep 09 2018

Keywords

Comments

After a(7), this appears to be the same as A319054.

Crossrefs

Programs

  • Mathematica
    Table[Max[Times@@@Select[IntegerPartitions[n],GCD@@#==1&]],{n,20}]

A366842 Number of integer partitions of n whose odd parts have a common divisor > 1.

Original entry on oeis.org

0, 0, 0, 1, 0, 2, 1, 4, 1, 8, 3, 13, 6, 21, 10, 36, 15, 53, 28, 80, 41, 122, 63, 174, 97, 250, 140, 359, 201, 496, 299, 685, 410, 949, 575, 1284, 804, 1726, 1093, 2327, 1482, 3076, 2023, 4060, 2684, 5358, 3572, 6970, 4745, 9050, 6221, 11734, 8115, 15060, 10609
Offset: 0

Views

Author

Gus Wiseman, Oct 28 2023

Keywords

Examples

			The a(3) = 1 through a(11) = 13 partitions:
  (3)  .  (5)    (3,3)  (7)      (3,3,2)  (9)        (5,5)      (11)
          (3,2)         (4,3)             (5,4)      (4,3,3)    (6,5)
                        (5,2)             (6,3)      (3,3,2,2)  (7,4)
                        (3,2,2)           (7,2)                 (8,3)
                                          (3,3,3)               (9,2)
                                          (4,3,2)               (4,4,3)
                                          (5,2,2)               (5,4,2)
                                          (3,2,2,2)             (6,3,2)
                                                                (7,2,2)
                                                                (3,3,3,2)
                                                                (4,3,2,2)
                                                                (5,2,2,2)
                                                                (3,2,2,2,2)
		

Crossrefs

This is the odd case of A018783, complement A000837.
The even version is A047967.
The complement is counted by A366850, ranks A366846.
A000041 counts integer partitions, strict A000009.
A000740 counts relatively prime compositions.
A113685 counts partitions by sum of odds, stat A366528, w/o zeros A365067.
A168532 counts partitions by gcd.
A239261 counts partitions with (sum of odd parts) = (sum of even parts).
A289508 gives gcd of prime indices, positions of ones A289509.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], GCD@@Select[#,OddQ]>1&]], {n,0,30}]
  • Python
    from math import gcd
    from sympy.utilities.iterables import partitions
    def A366842(n): return sum(1 for p in partitions(n) if gcd(*(q for q in p if q&1))>1) # Chai Wah Wu, Oct 28 2023

A366843 Number of integer partitions of n into odd, relatively prime parts.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 3, 4, 6, 6, 9, 11, 13, 17, 21, 23, 32, 37, 42, 53, 62, 70, 88, 103, 116, 139, 164, 184, 220, 255, 283, 339, 390, 435, 511, 578, 653, 759, 863, 963, 1107, 1259, 1401, 1609, 1814, 2015, 2303, 2589, 2878, 3259, 3648, 4058, 4580, 5119, 5672, 6364
Offset: 0

Views

Author

Gus Wiseman, Oct 28 2023

Keywords

Examples

			The a(1) = 1 through a(8) = 6 partitions:
  (1)  (11)  (111)  (31)    (311)    (51)      (331)      (53)
                    (1111)  (11111)  (3111)    (511)      (71)
                                     (111111)  (31111)    (3311)
                                               (1111111)  (5111)
                                                          (311111)
                                                          (11111111)
		

Crossrefs

Allowing even parts gives A000837.
The strict case is A366844, with evens A078374.
The complement is counted by A366852, with evens A018783.
The pairwise coprime version is A366853, with evens A051424.
A000041 counts integer partitions, strict A000009 (also into odds).
A000740 counts relatively prime compositions.
A168532 counts partitions by gcd.
A366842 counts partitions whose odd parts have a common divisor > 1.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],#=={}||And@@OddQ/@#&&GCD@@#==1&]],{n,0,30}]
  • Python
    from math import gcd
    from sympy.utilities.iterables import partitions
    def A366843(n): return sum(1 for p in partitions(n) if all(d&1 for d in p) and gcd(*p)==1) # Chai Wah Wu, Oct 30 2023

A316429 Heinz numbers of integer partitions whose length is equal to their LCM.

Original entry on oeis.org

2, 6, 9, 20, 50, 56, 84, 125, 126, 176, 189, 196, 240, 294, 360, 416, 441, 540, 600, 624, 686, 810, 900, 936, 968, 1029, 1040, 1088, 1215, 1350, 1404, 1500, 1560, 2025, 2106, 2250, 2340, 2401, 2432, 2600, 2704, 3159, 3375, 3510, 3648, 3750, 3900, 4056, 5265
Offset: 1

Views

Author

Gus Wiseman, Jul 02 2018

Keywords

Comments

A110295 is a subsequence.

Examples

			3750 is the Heinz number of (3,3,3,3,2,1), whose length and lcm are both 6.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2,200],PrimeOmega[#]==LCM@@Cases[FactorInteger[#],{p_,k_}:>PrimePi[p]]&]
  • PARI
    heinz(n) = my(f=factor(n), pr=f[,1]~,exps=f[,2], res=vector(vecsum(exps)), t=0); for(i = 1, #pr, pr[i] = primepi(pr[i]); for(j=1, exps[i],t++; res[t] = pr[i])); res
    is(n) = my(h = heinz(n)); lcm(h)==#h \\ David A. Corneth, Jul 05 2018

A319318 Number of integer partitions of n such that every distinct submultiset has a different GCD.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 3, 2, 3, 3, 5, 2, 6, 5, 5, 5, 8, 5, 9, 6, 8, 9, 11, 6, 11, 11, 11, 10, 14, 9, 16, 12, 14, 15, 15, 11, 19, 17, 17, 14, 22, 15, 22, 18, 18, 21, 25, 16, 24, 21, 23, 22, 28, 21, 26, 22, 26, 27, 32, 20, 35, 30, 27, 27, 31, 27, 38, 30, 33, 29
Offset: 1

Views

Author

Gus Wiseman, Sep 17 2018

Keywords

Comments

Note that such partitions are necessarily strict.

Examples

			The a(31) = 16 partitions are (31), (16,15), (17,14), (18,13), (19,12), (20,11), (21,10), (22,9), (23,8), (24,7), (25,6), (26,5), (27,4), (28,3), (29,2), (15,10,6).
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&UnsameQ@@GCD@@@Union[Rest[Subsets[#]]]&]],{n,30}]

A328336 Numbers with no consecutive prime indices relatively prime.

Original entry on oeis.org

1, 2, 3, 5, 7, 9, 11, 13, 17, 19, 21, 23, 25, 27, 29, 31, 37, 39, 41, 43, 47, 49, 53, 57, 59, 61, 63, 65, 67, 71, 73, 79, 81, 83, 87, 89, 91, 97, 101, 103, 107, 109, 111, 113, 115, 117, 121, 125, 127, 129, 131, 133, 137, 139, 147, 149, 151, 157, 159, 163, 167
Offset: 1

Views

Author

Gus Wiseman, Oct 14 2019

Keywords

Comments

First differs from A318978 in having 897, with prime indices {2, 6, 9}.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of partitions no consecutive parts relatively prime (A328187).
Besides the initial 1 this differs from A305078: 47541=897*prime(16) is in A305078 but not in this set. - Andrey Zabolotskiy, Nov 13 2019

Examples

			The sequence of terms together with their prime indices begins:
   1: {}
   2: {1}
   3: {2}
   5: {3}
   7: {4}
   9: {2,2}
  11: {5}
  13: {6}
  17: {7}
  19: {8}
  21: {2,4}
  23: {9}
  25: {3,3}
  27: {2,2,2}
  29: {10}
  31: {11}
  37: {12}
  39: {2,6}
  41: {13}
  43: {14}
		

Crossrefs

Numbers with consecutive prime indices relatively prime are A328335.
Strict partitions with no consecutive parts relatively prime are A328220.
Numbers with relatively prime prime indices are A289509.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],!MatchQ[primeMS[#],{_,x_,y_,_}/;GCD[x,y]==1]&]

A101391 Triangle read by rows: T(n,k) is the number of compositions of n into k parts x_1, x_2, ..., x_k such that gcd(x_1,x_2,...,x_k) = 1 (1<=k<=n).

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 2, 3, 1, 0, 4, 6, 4, 1, 0, 2, 9, 10, 5, 1, 0, 6, 15, 20, 15, 6, 1, 0, 4, 18, 34, 35, 21, 7, 1, 0, 6, 27, 56, 70, 56, 28, 8, 1, 0, 4, 30, 80, 125, 126, 84, 36, 9, 1, 0, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1, 0, 4, 42, 154, 325, 461, 462, 330, 165, 55, 11, 1, 0, 12, 66, 220, 495, 792, 924, 792, 495, 220, 66, 12, 1
Offset: 1

Views

Author

Emeric Deutsch, Jan 26 2005

Keywords

Comments

If instead we require that the individual parts (x_i,x_j) be relatively prime, we get A282748. This is the question studied by Shonhiwa (2006). - N. J. A. Sloane, Mar 05 2017.

Examples

			T(6,3)=9 because we have 411,141,114 and the six permutations of 123 (222 does not qualify).
T(8,3)=18 because binomial(0,2)*mobius(8/1)+binomial(1,2)*mobius(8/2)+binomial(3,2)*mobius(8/4)+binomial(7,2)*mobius(8/8)=0+0+(-3)+21=18.
Triangle begins:
   1;
   0,  1;
   0,  2,  1;
   0,  2,  3,   1;
   0,  4,  6,   4,   1;
   0,  2,  9,  10,   5,   1;
   0,  6, 15,  20,  15,   6,   1;
   0,  4, 18,  34,  35,  21,   7,   1;
   0,  6, 27,  56,  70,  56,  28,   8,   1;
   0,  4, 30,  80, 125, 126,  84,  36,   9,   1;
   0, 10, 45, 120, 210, 252, 210, 120,  45,  10,  1;
   0,  4, 42, 154, 325, 461, 462, 330, 165,  55, 11,  1;
   0, 12, 66, 220, 495, 792, 924, 792, 495, 220, 66, 12, 1;
  ...
From _Gus Wiseman_, Oct 19 2020: (Start)
Row n = 6 counts the following compositions:
  (15)  (114)  (1113)  (11112)  (111111)
  (51)  (123)  (1122)  (11121)
        (132)  (1131)  (11211)
        (141)  (1212)  (12111)
        (213)  (1221)  (21111)
        (231)  (1311)
        (312)  (2112)
        (321)  (2121)
        (411)  (2211)
               (3111)
Missing are: (42), (24), (33), (222).
(End)
		

Crossrefs

Mirror image of A039911.
Row sums are A000740.
A000837 counts relatively prime partitions.
A135278 counts compositions by length.
A282748 is the pairwise coprime instead of relatively prime version.
A282750 is the unordered version.
A291166 ranks these compositions (evidently).
T(2n+1,n+1) gives A000984.

Programs

  • Maple
    with(numtheory): T:=proc(n,k) local d, j, b: d:=divisors(n): for j from 1 to tau(n) do b[j]:=binomial(d[j]-1,k-1)*mobius(n/d[j]) od: sum(b[i],i=1..tau(n)) end: for n from 1 to 14 do seq(T(n,k),k=1..n) od; # yields the sequence in triangular form
    # second Maple program:
    b:= proc(n, g) option remember; `if`(n=0, `if`(g=1, 1, 0),
          expand(add(b(n-j, igcd(g, j))*x, j=1..n)))
        end:
    T:= (n, k)-> coeff(b(n,0),x,k):
    seq(seq(T(n,k), k=1..n), n=1..14);  # Alois P. Heinz, May 05 2025
  • Mathematica
    t[n_, k_] := Sum[Binomial[d-1, k-1]*MoebiusMu[n/d], {d, Divisors[n]}]; Table[t[n, k], {n, 2, 14}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jan 20 2014 *)
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n,{k}],GCD@@#==1&]],{n,10},{k,2,n}] (* change {k,2,n} to {k,1,n} for the version with zeros. - Gus Wiseman, Oct 19 2020 *)
  • PARI
    T(n, k) = sumdiv(n, d, binomial(d-1, k-1)*moebius(n/d)); \\ Michel Marcus, Mar 09 2016

Formula

T(n,k) = Sum_{d|n} binomial(d-1,k-1)*mobius(n/d).
Sum_{k=1..n} k * T(n,k) = A085411(n). - Alois P. Heinz, May 05 2025

Extensions

Definition clarified by N. J. A. Sloane, Mar 05 2017
Edited by Alois P. Heinz, May 05 2025

A303139 Number of integer partitions of n with at least two but not all parts having a common divisor greater than 1.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 5, 6, 13, 17, 33, 37, 68, 82, 125, 159, 237, 278, 409, 491, 674, 830, 1121, 1329, 1781, 2144, 2770, 3345, 4299, 5086, 6507, 7752, 9687, 11571, 14378, 16985, 21039, 24876, 30379, 35924, 43734, 51320, 62238, 73068, 87747, 103021, 123347, 143955
Offset: 1

Views

Author

Gus Wiseman, Apr 19 2018

Keywords

Examples

			The a(7) = 5 partitions are (421), (331), (322), (2221), (22111).
		

Crossrefs

Programs

  • Mathematica
    Table[Select[IntegerPartitions[n],!CoprimeQ@@#&&GCD@@#===1&]//Length,{n,30}]
Previous Showing 31-40 of 105 results. Next