A304712
Number of integer partitions of n whose parts are all equal or whose distinct parts are pairwise coprime.
Original entry on oeis.org
1, 1, 2, 3, 5, 7, 10, 14, 19, 25, 32, 43, 54, 70, 86, 105, 130, 162, 196, 240, 286, 339, 405, 485, 573, 674, 790, 922, 1072, 1252, 1456, 1685, 1939, 2226, 2557, 2923, 3349, 3822, 4347, 4931, 5593, 6335, 7170, 8092, 9105, 10233, 11495, 12903, 14458, 16169, 18063
Offset: 0
The a(6) = 10 partitions whose parts are all equal or whose distinct parts are pairwise coprime are (6), (51), (411), (33), (321), (3111), (222), (2211), (21111), (111111).
Cf.
A000837,
A007359,
A018783,
A051424,
A056239,
A078374,
A101268,
A289508,
A289509,
A298748,
A300486,
A302569,
A302696,
A302698,
A302796,
A302797,
A304709,
A304711.
-
g:= proc(n, i, s) `if`(n=0, 1, `if`(i<1, 0,
b(n, i, select(x-> x<=i, s))))
end:
b:= proc(n, i, s) option remember; g(n, i-1, s)+(f->
`if`(f intersect s={}, add(g(n-i*j, i-1, s union f)
, j=1..n/i), 0))(numtheory[factorset](i))
end:
a:= n-> g(n$2, {}):
seq(a(n), n=0..60); # Alois P. Heinz, May 17 2018
-
Table[Select[IntegerPartitions[n],Or[SameQ@@#,CoprimeQ@@Union[#]]&]//Length,{n,20}]
(* Second program: *)
g[n_, i_, s_] := If[n == 0, 1, If[i < 1, 0, b[n, i, Select[s, # <= i &]]]];
b[n_, i_, s_] := b[n, i, s] = g[n, i - 1, s] + Function[f,
If[f ~Intersection~ s == {}, Sum[g[n - i*j, i - 1, s ~Union~ f],
{j, 1, n/i}], 0]][FactorInteger[i][[All, 1]]];
a[n_] := g[n, n, {}];
a /@ Range[0, 60] (* Jean-François Alcover, May 10 2021, after Alois P. Heinz *)
A305732
Heinz numbers of reducible integer partitions. Numbers n > 1 that are prime or whose prime indices are relatively prime and such that A181819(n) is already in the sequence.
Original entry on oeis.org
2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 26, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 64, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78
Offset: 1
60 has relatively prime prime indices {1,1,2,3} with multiplicities {1,1,2} corresponding to A181819(90) = 12. 12 has relatively prime prime indices {1,1,2} with multiplicities {1,2} corresponding to A181819(12) = 6. 6 has relatively prime prime indices {1,2} with multiplicities {1,1} corresponding to A181819(6) = 4. 4 has relatively prime prime indices {1,1} with multiplicities {2} corresponding to A181819(4) = 3. 3 is prime, so we conclude that 60 belongs to the sequence.
Cf.
A000837,
A007916,
A056239,
A181819,
A182850,
A289508,
A289509,
A298748,
A304465,
A304687,
A304818,
A305563,
A305731,
A305733.
-
rdzQ[n_]:=And[n>1,Or[PrimeQ[n],And[rdzQ[Times@@Prime/@FactorInteger[n][[All,2]]],GCD@@PrimePi/@FactorInteger[n][[All,1]]==1]]];
Select[Range[50],rdzQ]
A319055
Maximum product of an integer partition of n with relatively prime parts.
Original entry on oeis.org
1, 1, 2, 3, 6, 6, 12, 18, 24, 36, 54, 72, 108, 162, 216, 324, 486, 648, 972, 1458, 1944, 2916, 4374, 5832, 8748, 13122, 17496, 26244, 39366, 52488, 78732, 118098, 157464, 236196, 354294, 472392, 708588, 1062882, 1417176, 2125764, 3188646, 4251528, 6377292
Offset: 1
Cf.
A000740,
A000792,
A000793,
A000837,
A001414,
A007916,
A100953,
A281116,
A289508,
A289509,
A296302,
A319054,
A319057.
A366842
Number of integer partitions of n whose odd parts have a common divisor > 1.
Original entry on oeis.org
0, 0, 0, 1, 0, 2, 1, 4, 1, 8, 3, 13, 6, 21, 10, 36, 15, 53, 28, 80, 41, 122, 63, 174, 97, 250, 140, 359, 201, 496, 299, 685, 410, 949, 575, 1284, 804, 1726, 1093, 2327, 1482, 3076, 2023, 4060, 2684, 5358, 3572, 6970, 4745, 9050, 6221, 11734, 8115, 15060, 10609
Offset: 0
The a(3) = 1 through a(11) = 13 partitions:
(3) . (5) (3,3) (7) (3,3,2) (9) (5,5) (11)
(3,2) (4,3) (5,4) (4,3,3) (6,5)
(5,2) (6,3) (3,3,2,2) (7,4)
(3,2,2) (7,2) (8,3)
(3,3,3) (9,2)
(4,3,2) (4,4,3)
(5,2,2) (5,4,2)
(3,2,2,2) (6,3,2)
(7,2,2)
(3,3,3,2)
(4,3,2,2)
(5,2,2,2)
(3,2,2,2,2)
A000740 counts relatively prime compositions.
A239261 counts partitions with (sum of odd parts) = (sum of even parts).
Cf.
A007359,
A051424,
A055922,
A066208,
A078374,
A087436,
A116598,
A337485,
A366843,
A366844,
A366845.
-
Table[Length[Select[IntegerPartitions[n], GCD@@Select[#,OddQ]>1&]], {n,0,30}]
-
from math import gcd
from sympy.utilities.iterables import partitions
def A366842(n): return sum(1 for p in partitions(n) if gcd(*(q for q in p if q&1))>1) # Chai Wah Wu, Oct 28 2023
A366843
Number of integer partitions of n into odd, relatively prime parts.
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 3, 4, 6, 6, 9, 11, 13, 17, 21, 23, 32, 37, 42, 53, 62, 70, 88, 103, 116, 139, 164, 184, 220, 255, 283, 339, 390, 435, 511, 578, 653, 759, 863, 963, 1107, 1259, 1401, 1609, 1814, 2015, 2303, 2589, 2878, 3259, 3648, 4058, 4580, 5119, 5672, 6364
Offset: 0
The a(1) = 1 through a(8) = 6 partitions:
(1) (11) (111) (31) (311) (51) (331) (53)
(1111) (11111) (3111) (511) (71)
(111111) (31111) (3311)
(1111111) (5111)
(311111)
(11111111)
A000740 counts relatively prime compositions.
A366842 counts partitions whose odd parts have a common divisor > 1.
Cf.
A007359,
A047967,
A055922,
A066208,
A113685,
A116598,
A289509,
A289508,
A302697,
A337485,
A366845,
A366848,
A366849.
-
Table[Length[Select[IntegerPartitions[n],#=={}||And@@OddQ/@#&&GCD@@#==1&]],{n,0,30}]
-
from math import gcd
from sympy.utilities.iterables import partitions
def A366843(n): return sum(1 for p in partitions(n) if all(d&1 for d in p) and gcd(*p)==1) # Chai Wah Wu, Oct 30 2023
A316429
Heinz numbers of integer partitions whose length is equal to their LCM.
Original entry on oeis.org
2, 6, 9, 20, 50, 56, 84, 125, 126, 176, 189, 196, 240, 294, 360, 416, 441, 540, 600, 624, 686, 810, 900, 936, 968, 1029, 1040, 1088, 1215, 1350, 1404, 1500, 1560, 2025, 2106, 2250, 2340, 2401, 2432, 2600, 2704, 3159, 3375, 3510, 3648, 3750, 3900, 4056, 5265
Offset: 1
3750 is the Heinz number of (3,3,3,3,2,1), whose length and lcm are both 6.
Cf.
A056239,
A074761,
A110295,
A143773,
A237984,
A289508,
A289509,
A290103,
A296150,
A316413,
A316428,
A316430,
A316431.
-
Select[Range[2,200],PrimeOmega[#]==LCM@@Cases[FactorInteger[#],{p_,k_}:>PrimePi[p]]&]
-
heinz(n) = my(f=factor(n), pr=f[,1]~,exps=f[,2], res=vector(vecsum(exps)), t=0); for(i = 1, #pr, pr[i] = primepi(pr[i]); for(j=1, exps[i],t++; res[t] = pr[i])); res
is(n) = my(h = heinz(n)); lcm(h)==#h \\ David A. Corneth, Jul 05 2018
A319318
Number of integer partitions of n such that every distinct submultiset has a different GCD.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 3, 2, 3, 3, 5, 2, 6, 5, 5, 5, 8, 5, 9, 6, 8, 9, 11, 6, 11, 11, 11, 10, 14, 9, 16, 12, 14, 15, 15, 11, 19, 17, 17, 14, 22, 15, 22, 18, 18, 21, 25, 16, 24, 21, 23, 22, 28, 21, 26, 22, 26, 27, 32, 20, 35, 30, 27, 27, 31, 27, 38, 30, 33, 29
Offset: 1
The a(31) = 16 partitions are (31), (16,15), (17,14), (18,13), (19,12), (20,11), (21,10), (22,9), (23,8), (24,7), (25,6), (26,5), (27,4), (28,3), (29,2), (15,10,6).
-
Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&UnsameQ@@GCD@@@Union[Rest[Subsets[#]]]&]],{n,30}]
A328336
Numbers with no consecutive prime indices relatively prime.
Original entry on oeis.org
1, 2, 3, 5, 7, 9, 11, 13, 17, 19, 21, 23, 25, 27, 29, 31, 37, 39, 41, 43, 47, 49, 53, 57, 59, 61, 63, 65, 67, 71, 73, 79, 81, 83, 87, 89, 91, 97, 101, 103, 107, 109, 111, 113, 115, 117, 121, 125, 127, 129, 131, 133, 137, 139, 147, 149, 151, 157, 159, 163, 167
Offset: 1
The sequence of terms together with their prime indices begins:
1: {}
2: {1}
3: {2}
5: {3}
7: {4}
9: {2,2}
11: {5}
13: {6}
17: {7}
19: {8}
21: {2,4}
23: {9}
25: {3,3}
27: {2,2,2}
29: {10}
31: {11}
37: {12}
39: {2,6}
41: {13}
43: {14}
Numbers with consecutive prime indices relatively prime are
A328335.
Strict partitions with no consecutive parts relatively prime are
A328220.
Numbers with relatively prime prime indices are
A289509.
Cf.
A000837,
A056239,
A078374,
A112798,
A281116,
A289508,
A318981,
A328168,
A328169,
A328172,
A328187,
A328188.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],!MatchQ[primeMS[#],{_,x_,y_,_}/;GCD[x,y]==1]&]
A101391
Triangle read by rows: T(n,k) is the number of compositions of n into k parts x_1, x_2, ..., x_k such that gcd(x_1,x_2,...,x_k) = 1 (1<=k<=n).
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 2, 3, 1, 0, 4, 6, 4, 1, 0, 2, 9, 10, 5, 1, 0, 6, 15, 20, 15, 6, 1, 0, 4, 18, 34, 35, 21, 7, 1, 0, 6, 27, 56, 70, 56, 28, 8, 1, 0, 4, 30, 80, 125, 126, 84, 36, 9, 1, 0, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1, 0, 4, 42, 154, 325, 461, 462, 330, 165, 55, 11, 1, 0, 12, 66, 220, 495, 792, 924, 792, 495, 220, 66, 12, 1
Offset: 1
T(6,3)=9 because we have 411,141,114 and the six permutations of 123 (222 does not qualify).
T(8,3)=18 because binomial(0,2)*mobius(8/1)+binomial(1,2)*mobius(8/2)+binomial(3,2)*mobius(8/4)+binomial(7,2)*mobius(8/8)=0+0+(-3)+21=18.
Triangle begins:
1;
0, 1;
0, 2, 1;
0, 2, 3, 1;
0, 4, 6, 4, 1;
0, 2, 9, 10, 5, 1;
0, 6, 15, 20, 15, 6, 1;
0, 4, 18, 34, 35, 21, 7, 1;
0, 6, 27, 56, 70, 56, 28, 8, 1;
0, 4, 30, 80, 125, 126, 84, 36, 9, 1;
0, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1;
0, 4, 42, 154, 325, 461, 462, 330, 165, 55, 11, 1;
0, 12, 66, 220, 495, 792, 924, 792, 495, 220, 66, 12, 1;
...
From _Gus Wiseman_, Oct 19 2020: (Start)
Row n = 6 counts the following compositions:
(15) (114) (1113) (11112) (111111)
(51) (123) (1122) (11121)
(132) (1131) (11211)
(141) (1212) (12111)
(213) (1221) (21111)
(231) (1311)
(312) (2112)
(321) (2121)
(411) (2211)
(3111)
Missing are: (42), (24), (33), (222).
(End)
- Alois P. Heinz, Rows n = 1..200, flattened
- H. W. Gould, Binomial coefficients, the bracket function and compositions with relatively prime summands, Fib. Quart. 2(4) (1964), 241-260.
- Temba Shonhiwa, Compositions with pairwise relatively prime summands within a restricted setting, Fibonacci Quart. 44 (2006), no. 4, 316-323.
A000837 counts relatively prime partitions.
A135278 counts compositions by length.
A282748 is the pairwise coprime instead of relatively prime version.
A291166 ranks these compositions (evidently).
-
with(numtheory): T:=proc(n,k) local d, j, b: d:=divisors(n): for j from 1 to tau(n) do b[j]:=binomial(d[j]-1,k-1)*mobius(n/d[j]) od: sum(b[i],i=1..tau(n)) end: for n from 1 to 14 do seq(T(n,k),k=1..n) od; # yields the sequence in triangular form
# second Maple program:
b:= proc(n, g) option remember; `if`(n=0, `if`(g=1, 1, 0),
expand(add(b(n-j, igcd(g, j))*x, j=1..n)))
end:
T:= (n, k)-> coeff(b(n,0),x,k):
seq(seq(T(n,k), k=1..n), n=1..14); # Alois P. Heinz, May 05 2025
-
t[n_, k_] := Sum[Binomial[d-1, k-1]*MoebiusMu[n/d], {d, Divisors[n]}]; Table[t[n, k], {n, 2, 14}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jan 20 2014 *)
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n,{k}],GCD@@#==1&]],{n,10},{k,2,n}] (* change {k,2,n} to {k,1,n} for the version with zeros. - Gus Wiseman, Oct 19 2020 *)
-
T(n, k) = sumdiv(n, d, binomial(d-1, k-1)*moebius(n/d)); \\ Michel Marcus, Mar 09 2016
A303139
Number of integer partitions of n with at least two but not all parts having a common divisor greater than 1.
Original entry on oeis.org
0, 0, 0, 0, 1, 1, 5, 6, 13, 17, 33, 37, 68, 82, 125, 159, 237, 278, 409, 491, 674, 830, 1121, 1329, 1781, 2144, 2770, 3345, 4299, 5086, 6507, 7752, 9687, 11571, 14378, 16985, 21039, 24876, 30379, 35924, 43734, 51320, 62238, 73068, 87747, 103021, 123347, 143955
Offset: 1
The a(7) = 5 partitions are (421), (331), (322), (2221), (22111).
Cf.
A000837,
A018783,
A051424,
A078374,
A168532,
A289508,
A289509,
A298748,
A300486,
A302569,
A302696,
A302796,
A303138,
A303140.
Comments