A334192
Square array A(n,k), n >= 0, k >= 1, read by antidiagonals: A(n,k) = exp(1/k) * Sum_{j>=0} (k*j + 1)^n / ((-k)^j * j!).
Original entry on oeis.org
1, 1, 0, 1, 0, -1, 1, 0, -2, -1, 1, 0, -3, -4, 2, 1, 0, -4, -9, 4, 9, 1, 0, -5, -16, 0, 64, 9, 1, 0, -6, -25, -16, 189, 248, -50, 1, 0, -7, -36, -50, 384, 1377, 48, -267, 1, 0, -8, -49, -108, 625, 4416, 4374, -6512, -413, 1, 0, -9, -64, -196, 864, 10625, 26368, -26001, -51200, 2180
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, 0, 0, 0, 0, 0, ...
-1, -2, -3, -4, -5, -6, ...
-1, -4, -9, -16, -25, -36, ...
2, 4, 0, -16, -50, -108, ...
9, 64, 189, 384, 625, 864, ...
-
Table[Function[k, SeriesCoefficient[1/(1 - x) Sum[(-x/(1 - x))^j/Product[(1 - k i x/(1 - x)), {i, 1, j}], {j, 0, n}], {x, 0, n}]][m - n + 1], {m, 0, 10}, {n, 0, m}] // Flatten
Table[Function[k, n! SeriesCoefficient[Exp[x + (1 - Exp[k x])/k], {x, 0, n}]][m - n + 1], {m, 0, 10}, {n, 0, m}] // Flatten
A307080
a(n) = exp(1) * Sum_{k>=0} (-1)^k*(n*k + 1)^n/k!.
Original entry on oeis.org
1, 0, -3, 19, 497, -1899, -489491, -15433676, 618450881, 120846851155, 7012261819901, -467816186167659, -175527285590430863, -20961845760818684812, 568194037748383908653, 898095630359015975379151, 220433074470274983356464897, 16144974747716546214909454181
Offset: 0
-
Table[Exp[1] Sum[(-1)^k (n k + 1)^n/k!, {k, 0, Infinity}], {n, 0, 17}]
Table[n! SeriesCoefficient[Exp[1 + x - Exp[n x]], {x, 0, n}], {n, 0, 17}]
Join[{1}, Table[Sum[Binomial[n, k] n^k BellB[k, -1], {k, 0, n}], {n, 1, 17}]]
A358623
Regular triangle read by rows. T(n, k) = {{n, k}}, where {{n, k}} are the second order Stirling set numbers (or second order Stirling numbers). T(n, k) for 0 <= k <= n.
Original entry on oeis.org
1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 3, 0, 0, 0, 1, 10, 0, 0, 0, 0, 1, 25, 15, 0, 0, 0, 0, 1, 56, 105, 0, 0, 0, 0, 0, 1, 119, 490, 105, 0, 0, 0, 0, 0, 1, 246, 1918, 1260, 0, 0, 0, 0, 0, 0, 1, 501, 6825, 9450, 945, 0, 0, 0, 0, 0, 0, 1, 1012, 22935, 56980, 17325, 0, 0, 0, 0, 0, 0
Offset: 0
Triangle T(n, k) starts:
[0] 1;
[1] 0, 0;
[2] 0, 1, 0;
[3] 0, 1, 0, 0;
[4] 0, 1, 3, 0, 0;
[5] 0, 1, 10, 0, 0, 0;
[6] 0, 1, 25, 15, 0, 0, 0;
[7] 0, 1, 56, 105, 0, 0, 0, 0;
[8] 0, 1, 119, 490, 105, 0, 0, 0, 0;
[9] 0, 1, 246, 1918, 1260, 0, 0, 0, 0, 0;
- Ronald L. Graham, Donald E. Knuth, and Oren Patashnik, Concrete Mathematics, Addison-Wesley, Reading, 2nd ed. 1994, thirty-fourth printing 2022.
A008299 is an irregular subtriangle with more information.
A358622 (second order Stirling cycle numbers).
-
T := (n, k) -> add(binomial(n, k - j)*Stirling2(n - k + j, j)*(-1)^(k - j),
j = 0..k): for n from 0 to 9 do seq(T(n, k), k = 0..n) od;
# Using the e.g.f.:
egf := exp(z*(exp(t) - t - 1)): ser := series(egf, t, 12):
seq(print(seq(n!*coeff(coeff(ser, t, n), z, k), k = 0..n)), n = 0..9);
# Using second order Eulerian numbers:
A358623 := proc(n, k) if n = 0 then return 1 fi;
add(binomial(j, n - 2*k)*combinat:-eulerian2(n - k, n - k - j - 1), j = 0..n-k-1)
end: seq(seq(A358623(n, k), k = 0..n), n = 0..11);
-
# recursion over rows
from functools import cache
@cache
def StirlingSetOrd2(n: int) -> list[int]:
if n == 0: return [1]
if n == 1: return [0, 0]
rov: list[int] = StirlingSetOrd2(n - 2)
row: list[int] = StirlingSetOrd2(n - 1) + [0]
for k in range(1, n // 2 + 1):
row[k] = (n - 1) * rov[k - 1] + k * row[k]
return row
for n in range(9): print(StirlingSetOrd2(n))
# Alternative, using function BellMatrix from A264428.
def f(k: int) -> int:
return 1 if k > 0 else 0
print(BellMatrix(f, 9))
A363732
Triangle read by rows. The triangle algorithm applied to (-1)^n/n!.
Original entry on oeis.org
1, -2, 1, 5, -4, 1, -15, 15, -6, 1, 52, -60, 30, -8, 1, -203, 260, -150, 50, -10, 1, 877, -1218, 780, -300, 75, -12, 1, -4140, 6139, -4263, 1820, -525, 105, -14, 1, 21147, -33120, 24556, -11368, 3640, -840, 140, -16, 1, -115975, 190323, -149040, 73668, -25578, 6552, -1260, 180, -18, 1
Offset: 0
The triangle T(n, k) starts:
[0] 1;
[1] -2, 1;
[2] 5, -4, 1;
[3] -15, 15, -6, 1;
[4] 52, -60, 30, -8, 1;
[5] -203, 260, -150, 50, -10, 1;
[6] 877, -1218, 780, -300, 75, -12, 1;
[7] -4140, 6139, -4263, 1820, -525, 105, -14, 1;
[8] 21147, -33120, 24556, -11368, 3640, -840, 140, -16, 1;
- Peter Luschny, Table of n, a(n) for row 0..100.
- Kwang-Wu Chen, Algorithms for Bernoulli numbers and Euler numbers, J. Integer Sequences, 4 (2001), #01.1.6.
- Masanobu Kaneko, The Akiyama-Tanigawa algorithm for Bernoulli numbers, J. Integer Sequences, 3 (2000), #00.2.9.
- Naho Kawasaki and Yasuo Ohno, The triangle algorithm for Bernoulli polynomials, Integers, vol. 23 (2023). (See figure 4.)
- D. Merlini, R. Sprugnoli, and M. C. Verri, The Akiyama-Tanigawa Transformation, Integers, 5 (1) (2005) #A05.
Cf.
A023531,
A007318,
A000079,
A000012,
A154921,
A000670,
A196838/
A196839,
A164555/
A027642,
A153641,
A122045,
A155585,
A011971,
A123346,
A011972,
A056857,
A363524 (Chen sequence).
-
TA := proc(a, n, m, x) option remember; if n = 0 then a(m) else
normal((m + 1)*TA(a, n - 1, m + 1, x) - (m + 1 - x)*TA(a, n - 1, m, x)) fi end:
seq(seq(coeff(TA(n -> (-1)^n/n!, n, 0, x), x, k), k = 0..n), n = 0..10);
-
(* rows[0..n], n[0..oo] *)
(* row[n]= *)
n=9;r={};For[a=n+1,a>0,a--,AppendTo[r,(-1)^(a+1)*Sum[StirlingS2[a,k],{k,0,a}]*Product[(2*(a+j))/(2*j+2),{j,0,n-a}]]];r
(* columns[1..n], n[0..oo] *)
(* column[n]= *)
n=0;c={};For[a=1,a<15,a++,AppendTo[c,(-1)^(a+1)*Sum[StirlingS2[a,k],{k,0,a}]*Product[(2*(a+j-1))/(2*j),{j,1,n}]]];c
(* sequence *)
s={};For[n=0,n<15,n++,For[a=n+1,a>0,a--,AppendTo[s,(-1)^(a+1)*Sum[StirlingS2[a,k],{k,0,a}]*Product[(2*(a+j))/(2*j+2),{j,0,n-a}]]]];s
(* Detlef Meya, Jun 22 2023 *)
-
def a(n): return (-1)^n / factorial(n)
@cached_function
def p(n, m):
R = PolynomialRing(QQ, "x")
if n == 0: return R(a(m))
return R((m + 1)*p(n - 1, m + 1) - (m + 1 - x)*p(n - 1, m))
for n in range(10): print(p(n, 0).list())
A336589
Sum_{n>=0} a(n) * x^n / (n!)^2 = exp(x) * BesselI(0,2*sqrt(1 - exp(x))).
Original entry on oeis.org
1, 0, -3, -19, -75, 574, 25795, 579963, 9342529, 21955076, -7954085799, -535479422655, -25206613635203, -871888114433454, -7465407495946777, 2538884115164554199, 344689220434285963905, 31689538033223254172648, 2273498459548301881979029
Offset: 0
-
nmax = 18; CoefficientList[Series[Exp[x] BesselI[0, 2 Sqrt[1 - Exp[x]]], {x, 0, nmax}], x] Range[0, nmax]!^2
Table[n! Sum[(-1)^k StirlingS2[n + 1, k + 1]/k!, {k, 0, n}], {n, 0, 18}]
-
a(n) = n! * sum(k=0, n, (-1)^k*stirling(n+1,k+1,2) / k!); \\ Michel Marcus, Jul 29 2020
A337062
E.g.f.: exp(1 + x^2/2 - exp(x)).
Original entry on oeis.org
1, -1, 1, -2, 4, -7, 21, -51, 113, -498, 1088, -3335, 21407, -14653, 232389, -1275288, -3636526, -44468245, -7468609, 700603965, 12178055777, 67189448344, 175549544778, -2432123216941, -36279392911507, -287078642854853, -945866835928323
Offset: 0
-
nmax = 26; CoefficientList[Series[Exp[1 + x^2/2 - Exp[x]], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = -a[n - 1] - Sum[Binomial[n - 1, k - 1] a[n - k], {k, 3, n}]; Table[a[n], {n, 0, 26}]
Table[Sum[Binomial[n, 2 k] (2 k - 1)!! BellB[n - 2 k, -1], {k, 0, Floor[n/2]}], {n, 0, 26}]
A337166
Sum_{n>=0} a(n) * x^n / (n!)^2 = exp(1 + x - BesselI(0,2*sqrt(x))).
Original entry on oeis.org
1, 0, -1, -1, 17, 99, -926, -20385, 25969, 7206059, 90298826, -3271747557, -149187119280, 236884125841, 233237751740057, 7110791842650002, -293292401726383791, -32980038867059802549, -498084376275585698222, 114298048468067933019627, 9072219653673352772098960
Offset: 0
-
A337166 := proc(n)
option remember ;
if n = 0 then
1;
else
add(binomial(n,k)^2*(n-k)*procname(k),k=0..n-2) ;
-%/n ;
end if;
simplify(%) ;
end proc:
seq(A337166(n),n=0..40) ; # R. J. Mathar, Aug 19 2022
-
nmax = 20; CoefficientList[Series[Exp[1 + x - BesselI[0, 2 Sqrt[x]]], {x, 0, nmax}], x] Range[0, nmax]!^2
a[0] = 1; a[n_] := a[n] = -(1/n) Sum[Binomial[n, k]^2 (n - k) a[k], {k, 0, n - 2}]; Table[a[n], {n, 0, 20}]
A332254
E.g.f.: 1 / (2 - exp(exp(x) - 1 - x)).
Original entry on oeis.org
1, 0, 1, 1, 10, 31, 271, 1534, 14603, 120173, 1310224, 13947517, 175477699, 2265702388, 32673218085, 492565328493, 8053045395018, 138334722101571, 2535114408394699, 48790865853110950, 991843960201311455, 21121971129683138297, 471959969940724275432
Offset: 0
-
nmax = 22; CoefficientList[Series[1/(2 - Exp[Exp[x] - 1 - x]), {x, 0, nmax}], x] Range[0, nmax]!
-
seq(n)={Vec(serlaplace(1/(2 - exp(exp(x + O(x*x^n)) - 1 - x))))} \\ Andrew Howroyd, Feb 08 2020
A361531
Expansion of e.g.f. exp(1 - exp(x) + x^3/6).
Original entry on oeis.org
1, -1, 0, 2, -3, -2, 21, -44, -62, 631, -1367, -3170, 34849, -86855, -302964, 3058342, -8509971, -36488802, 430842051, -1111575888, -6244999438, 78663444549, -250850311489, -1724880111306, 18475299723737, -65061274823853, -444914618968648, 6831921081061986
Offset: 0
Comments