A299701 Number of distinct subset-sums of the integer partition with Heinz number n.
1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 5, 2, 4, 4, 5, 2, 6, 2, 6, 4, 4, 2, 6, 3, 4, 4, 6, 2, 7, 2, 6, 4, 4, 4, 7, 2, 4, 4, 7, 2, 8, 2, 6, 6, 4, 2, 7, 3, 6, 4, 6, 2, 8, 4, 8, 4, 4, 2, 8, 2, 4, 5, 7, 4, 8, 2, 6, 4, 7, 2, 8, 2, 4, 6, 6, 4, 8, 2, 8, 5, 4, 2, 9, 4, 4, 4
Offset: 1
Keywords
Examples
The subset-sums of (5,1,1,1) are {0, 1, 2, 3, 5, 6, 7, 8} so a(88) = 8. The subset-sums of (4,3,1) are {0, 1, 3, 4, 5, 7, 8} so a(70) = 7.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..20000
Crossrefs
Programs
-
Mathematica
Table[Length[Union[Total/@Subsets[Join@@Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]],{n,100}]
Formula
Extensions
Comment corrected by Gus Wiseman, Aug 09 2024
Comments