cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 340 results. Next

A299701 Number of distinct subset-sums of the integer partition with Heinz number n.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 5, 2, 4, 4, 5, 2, 6, 2, 6, 4, 4, 2, 6, 3, 4, 4, 6, 2, 7, 2, 6, 4, 4, 4, 7, 2, 4, 4, 7, 2, 8, 2, 6, 6, 4, 2, 7, 3, 6, 4, 6, 2, 8, 4, 8, 4, 4, 2, 8, 2, 4, 5, 7, 4, 8, 2, 6, 4, 7, 2, 8, 2, 4, 6, 6, 4, 8, 2, 8, 5, 4, 2, 9, 4, 4, 4
Offset: 1

Views

Author

Gus Wiseman, Feb 17 2018

Keywords

Comments

An integer n is a subset-sum of an integer partition y if there exists a submultiset of y with sum n. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
Position of first appearance of n appears to be A259941(n-1) = least Heinz number of a complete partition of n-1. - Gus Wiseman, Nov 16 2023

Examples

			The subset-sums of (5,1,1,1) are {0, 1, 2, 3, 5, 6, 7, 8} so a(88) = 8.
The subset-sums of (4,3,1) are {0, 1, 3, 4, 5, 7, 8} so a(70) = 7.
		

Crossrefs

Positions of first appearances are A259941.
The triangle for this rank statistic is A365658.
The semi version is A366739, sum A366738, strict A366741.

Programs

  • Mathematica
    Table[Length[Union[Total/@Subsets[Join@@Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]],{n,100}]

Formula

a(n) <= A000005(n) and a(n) = A000005(n) iff n is the Heinz number of a knapsack partition (A299702).

Extensions

Comment corrected by Gus Wiseman, Aug 09 2024

A300383 In the ranked poset of integer partitions ordered by refinement, a(n) is the size of the lower ideal generated by the partition with Heinz number n.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 5, 1, 3, 3, 7, 2, 11, 5, 5, 1, 15, 3, 22, 3, 8, 7, 30, 2, 6, 11, 4, 5, 42, 5, 56, 1, 11, 15, 11, 3, 77, 22, 17, 3, 101, 8, 135, 7, 7, 30, 176, 2, 14, 6, 23, 11, 231, 4, 15, 5, 33, 42, 297, 5, 385, 56, 11, 1, 23, 11, 490, 15, 45, 11, 627, 3
Offset: 1

Views

Author

Gus Wiseman, Mar 04 2018

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). The size of the corresponding upper ideal is A317141(n). Chains are A213427(n) and maximal chains are A002846(n).

Examples

			The a(30) = 5 partitions are (321), (2211), (3111), (21111), (111111), with corresponding Heinz numbers: 30, 36, 40, 48, 64.
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Union[Sort/@Join@@@Tuples[IntegerPartitions/@primeMS[n]]]],{n,50}]

Formula

a(prime(n)) = A000041(n).
a(x * y) <= a(x) * a(y).

A353832 Heinz number of the multiset of run-sums of the prime indices of n.

Original entry on oeis.org

1, 2, 3, 3, 5, 6, 7, 5, 7, 10, 11, 9, 13, 14, 15, 7, 17, 14, 19, 15, 21, 22, 23, 15, 13, 26, 13, 21, 29, 30, 31, 11, 33, 34, 35, 21, 37, 38, 39, 25, 41, 42, 43, 33, 35, 46, 47, 21, 19, 26, 51, 39, 53, 26, 55, 35, 57, 58, 59, 45, 61, 62, 49, 13, 65, 66, 67, 51, 69, 70, 71, 35, 73, 74, 39, 57, 77, 78, 79, 35, 19
Offset: 1

Views

Author

Gus Wiseman, May 23 2022

Keywords

Comments

The sequence of runs of a sequence consists of its maximal consecutive constant subsequences when read left-to-right. For example, the runs of (2,2,1,1,1,3,2,2) are (2,2), (1,1,1), (3), (2,2), with sums (4,3,3,4).
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
This sequence represents the transformation f(P) described by Kimberling at A237685.

Examples

			The prime indices of 1260 are {1,1,2,2,3,4}, with run-sums (2,4,3,4), and the multiset {2,3,4,4} has Heinz number 735, so a(1260) = 735.
		

Crossrefs

The number of distinct prime factors of a(n) is A353835, weak A353861.
The version for compositions is A353847, listed A353932.
The greatest prime factor of a(n) has index A353862, least A353931.
A001222 counts prime factors, distinct A001221.
A056239 adds up prime indices, row sums of A112798 and A296150.
A300273 ranks collapsible partitions, counted by A275870.
A353833 ranks partitions with all equal run-sums, counted by A304442.
A353838 ranks partitions with all distinct run-sums, counted by A353837.
A353840-A353846 pertain to partition run-sum trajectory.
A353851 counts compositions w/ all equal run-sums, ranked by A353848.
A353864 counts rucksack partitions, ranked by A353866.
A353865 counts perfect rucksack partitions, ranked by A353867.
Cf. A005811, A047966, A071625, A073093, A181819, A182850, A182857, A304660, A323014, A353834, A353839, A353841 (1 + iterations needed to reach a squarefree number).

Programs

  • Mathematica
    Table[Times@@Prime/@Cases[If[n==1,{},FactorInteger[n]],{p_,k_}:>PrimePi[p]*k],{n,100}]
  • PARI
    pis_to_runs(n) = { my(runs=List([]), f=factor(n)); for(i=1,#f~,while(f[i,2], listput(runs,primepi(f[i,1])); f[i,2]--)); (runs); };
    A353832(n) = if(1==n,n,my(pruns = pis_to_runs(n), m=1, runsum=pruns[1]); for(i=2,#pruns,if(pruns[i] == pruns[i-1], runsum += pruns[i], m *= prime(runsum); runsum = pruns[i])); (m*prime(runsum))); \\ Antti Karttunen, Jan 20 2025

Formula

A001222(a(n)) = A001221(n).
A001221(a(n)) = A353835(n).
A061395(a(n)) = A353862(n).

Extensions

More terms from Antti Karttunen, Jan 20 2025

A317141 In the ranked poset of integer partitions ordered by refinement, number of integer partitions coarser (greater) than or equal to the integer partition with Heinz number n.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 2, 5, 1, 4, 1, 4, 2, 2, 1, 6, 2, 2, 3, 4, 1, 5, 1, 7, 2, 2, 2, 8, 1, 2, 2, 7, 1, 5, 1, 4, 4, 2, 1, 10, 2, 4, 2, 4, 1, 7, 2, 7, 2, 2, 1, 9, 1, 2, 4, 11, 2, 5, 1, 4, 2, 5, 1, 12, 1, 2, 4, 4, 2, 5, 1, 11, 5, 2, 1, 10, 2
Offset: 1

Views

Author

Gus Wiseman, Jul 22 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			The a(24) = 6 partitions coarser than or equal to (2111) are (2111), (311), (221), (32), (41), (5), with Heinz numbers 24, 20, 18, 15, 14, 11.
		

Crossrefs

Programs

  • Maple
    g:= l-> `if`(l=[], {[]}, (t-> map(sort, map(x->
            [seq(subsop(i=x[i]+t, x), i=1..nops(x)),
            [x[], t]][], g(subsop(-1=[][], l)))))(l[-1])):
    a:= n-> nops(g(map(i-> numtheory[pi](i[1])$i[2], ifactors(n)[2]))):
    seq(a(n), n=1..100);  # Alois P. Heinz, Jul 22 2018
  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    ptncaps[ptn_]:=Union[Sort/@Apply[Plus,mps[ptn],{2}]];
    Table[Length[ptncaps[primeMS[n]]],{n,100}]

A368100 Numbers of which it is possible to choose a different prime factor of each prime index.

Original entry on oeis.org

1, 3, 5, 7, 11, 13, 15, 17, 19, 23, 29, 31, 33, 35, 37, 39, 41, 43, 47, 51, 53, 55, 59, 61, 65, 67, 69, 71, 73, 77, 79, 83, 85, 87, 89, 91, 93, 95, 97, 101, 103, 107, 109, 111, 113, 119, 123, 127, 129, 131, 137, 139, 141, 143, 145, 149, 151, 155, 157, 161, 163
Offset: 1

Views

Author

Gus Wiseman, Dec 12 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 2849 are {4,5,12}, with prime factors {{2,2},{5},{2,2,3}}, and of the two choices (2,5,2) and (2,5,3) the latter has all different terms, so 2849 is in the sequence.
The terms together with their prime indices of prime indices begin:
   1: {}
   3: {{1}}
   5: {{2}}
   7: {{1,1}}
  11: {{3}}
  13: {{1,2}}
  15: {{1},{2}}
  17: {{4}}
  19: {{1,1,1}}
  23: {{2,2}}
  29: {{1,3}}
  31: {{5}}
  33: {{1},{3}}
  35: {{2},{1,1}}
  37: {{1,1,2}}
  39: {{1},{1,2}}
		

Crossrefs

The complement is A355529, odd A355535, binary A367907.
Positions of positive terms in A367771.
The version for binary indices is A367906, positive positions in A367905.
For a unique choice we have A368101, binary A367908.
The version for divisors instead of factors is A368110, complement A355740.
A058891 counts set-systems, covering A003465, connected A323818.
A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
A124010 gives prime signature, sorted A118914, length A001221, sum A001222.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100], Select[Tuples[prix/@prix[#]], UnsameQ@@#&]!={}&]

A036037 Triangle read by rows in which row n lists all the parts of all the partitions of n, sorted first by length and then colexicographically.

Original entry on oeis.org

1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 4, 3, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 5, 4, 1, 3, 2, 3, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 6, 5, 1, 4, 2, 3, 3, 4, 1, 1, 3, 2, 1, 2, 2, 2, 3, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 6, 1, 5, 2, 4, 3, 5, 1, 1, 4, 2, 1, 3, 3, 1, 3, 2, 2, 4, 1, 1
Offset: 1

Views

Author

Keywords

Comments

First differs from A334439 for partitions of 9. Namely, this sequence has (4,4,1) before (5,2,2), while A334439 has (5,2,2) before (4,4,1). - Gus Wiseman, May 08 2020
This is also a list of all the possible prime signatures of a number, arranged in graded colexicographic ordering. - N. J. A. Sloane, Feb 09 2014
This is also the Abramowitz-Stegun ordering of reversed partitions (A036036) if the partitions are reversed again after sorting. Partitions sorted first by sum and then colexicographically are A211992. - Gus Wiseman, May 08 2020

Examples

			First five rows are:
{{1}}
{{2}, {1, 1}}
{{3}, {2, 1}, {1, 1, 1}}
{{4}, {3, 1}, {2, 2}, {2, 1, 1}, {1, 1, 1, 1}}
{{5}, {4, 1}, {3, 2}, {3, 1, 1}, {2, 2, 1}, {2, 1, 1, 1}, {1, 1, 1, 1, 1}}
Up to the fifth row, this is exactly the same as the reverse lexicographic ordering A080577. The first row which differs is the sixth one, which reads ((6), (5,1), (4,2), (3,3), (4,1,1), (3,2,1), (2,2,2), (3,1,1,1), (2,2,1,1), (2,1,1,1,1), (1,1,1,1,1,1)). - _M. F. Hasler_, Jan 23 2020
From _Gus Wiseman_, May 08 2020: (Start)
The sequence of all partitions begins:
  ()         (3,2)        (2,1,1,1,1)
  (1)        (3,1,1)      (1,1,1,1,1,1)
  (2)        (2,2,1)      (7)
  (1,1)      (2,1,1,1)    (6,1)
  (3)        (1,1,1,1,1)  (5,2)
  (2,1)      (6)          (4,3)
  (1,1,1)    (5,1)        (5,1,1)
  (4)        (4,2)        (4,2,1)
  (3,1)      (3,3)        (3,3,1)
  (2,2)      (4,1,1)      (3,2,2)
  (2,1,1)    (3,2,1)      (4,1,1,1)
  (1,1,1,1)  (2,2,2)      (3,2,1,1)
  (5)        (3,1,1,1)    (2,2,2,1)
  (4,1)      (2,2,1,1)    (3,1,1,1,1)
(End)
		

Crossrefs

See A036036 for the graded reflected colexicographic ("Abramowitz and Stegun" or Hindenburg) ordering.
See A080576 for the graded reflected lexicographic ("Maple") ordering.
See A080577 for the graded reverse lexicographic ("Mathematica") ordering: differs from a(48) on!
See A228100 for the Fenner-Loizou (binary tree) ordering.
See also A036038, A036039, A036040: (multinomial coefficients).
Partition lengths are A036043.
Reversing all partitions gives A036036.
The number of distinct parts is A103921.
Taking Heinz numbers gives A185974.
The version ignoring length is A211992.
The version for revlex instead of colex is A334439.
Lexicographically ordered reversed partitions are A026791.
Reverse-lexicographically ordered partitions are A080577.
Sorting partitions by Heinz number gives A296150.

Programs

  • Mathematica
    Reverse/@Join@@Table[Sort[Reverse/@IntegerPartitions[n]],{n,8}] (* Gus Wiseman, May 08 2020 *)
    - or -
    colen[f_,c_]:=OrderedQ[{Reverse[f],Reverse[c]}];
    Join@@Table[Sort[IntegerPartitions[n],colen],{n,8}] (* Gus Wiseman, May 08 2020 *)

Extensions

Name corrected by Gus Wiseman, May 12 2020
Mathematica programs corrected to reflect offset of one and not zero by Robert Price, Jun 04 2020

A088902 Numbers n such that n = product (p_k)^(c_k) and set of its (c_k k's)'s is a self-conjugate partition, where p_k is k-th prime and c_k > 0.

Original entry on oeis.org

1, 2, 6, 9, 20, 30, 56, 75, 84, 125, 176, 210, 264, 350, 416, 441, 624, 660, 735, 1088, 1100, 1386, 1560, 1632, 1715, 2310, 2401, 2432, 2600, 3267, 3276, 3648, 4080, 5390, 5445, 5460, 5888, 6800, 7546, 7722, 8568, 8832, 9120, 12705, 12740, 12870, 13689
Offset: 1

Views

Author

Naohiro Nomoto, Nov 28 2003

Keywords

Comments

The Heinz numbers of the self-conjugate partitions. We define the Heinz number of a partition p = [p_1, p_2, ..., p_r] to be Product(p_j-th prime, j=1..r) (a concept used by Alois P. Heinz in A215366 as an "encoding" of a partition). For example, for the partition [1, 1, 1, 4] we get 2*2*2*7 = 56. It is in the sequence since [1,1,1,4] is self-conjugate. - Emeric Deutsch, Jun 05 2015

Examples

			20 is in the sequence because 20 = 2^2 * 5^1 = (p_1)^2 *(p_3)^1, (two 1's, one 3's) = (1,1,3) is a self-conjugate partition of 5.
From _Gus Wiseman_, Jun 28 2022: (Start)
The terms together with their prime indices begin:
    1: ()
    2: (1)
    6: (2,1)
    9: (2,2)
   20: (3,1,1)
   30: (3,2,1)
   56: (4,1,1,1)
   75: (3,3,2)
   84: (4,2,1,1)
  125: (3,3,3)
  176: (5,1,1,1,1)
  210: (4,3,2,1)
  264: (5,2,1,1,1)
(End)
		

Crossrefs

Fixed points of A122111.
A002110 (primorial numbers) is a subsequence.
After a(1) and a(2), a subsequence of A241913.
These partitions are counted by A000700.
The same count comes from A258116.
The complement is A352486, counted by A330644.
These are the positions of zeros in A352491.
A000041 counts integer partitions, strict A000009.
A325039 counts partitions w/ product = conjugate product, ranked by A325040.
Heinz number (rank) and partition:
- A003963 = product of partition, conjugate A329382.
- A008480 = number of permutations of partition, conjugate A321648.
- A056239 = sum of partition.
- A296150 = parts of partition, reverse A112798, conjugate A321649.
- A352487 = less than conjugate, counted by A000701.
- A352488 = greater than or equal to conjugate, counted by A046682.
- A352489 = less than or equal to conjugate, counted by A046682.
- A352490 = greater than conjugate, counted by A000701.

Programs

  • Maple
    with(numtheory): c := proc (n) local B, C: B := proc (n) local pf: pf := op(2, ifactors(n)): [seq(seq(pi(op(1, op(i, pf))), j = 1 .. op(2, op(i, pf))), i = 1 .. nops(pf))] end proc: C := proc (P) local a: a := proc (j) local c, i: c := 0: for i to nops(P) do if j <= P[i] then c := c+1 else end if end do: c end proc: [seq(a(k), k = 1 .. max(P))] end proc: mul(ithprime(C(B(n))[q]), q = 1 .. nops(C(B(n)))) end proc: SC := {}: for i to 14000 do if c(i) = i then SC := `union`(SC, {i}) else end if end do: SC; # Emeric Deutsch, May 09 2015
  • Mathematica
    Select[Range[14000], Function[n, n == If[n == 1, 1, Module[{l = #, m = 0}, Times @@ Power @@@ Table[l -= m; l = DeleteCases[l, 0]; {Prime@ Length@ l, m = Min@ l}, Length@ Union@ l]] &@ Catenate[ConstantArray[PrimePi@ #1, #2] & @@@ FactorInteger@ n]]]] (* Michael De Vlieger, Aug 27 2016, after JungHwan Min at A122111 *)

Extensions

More terms from David Wasserman, Aug 26 2005

A318283 Sum of elements of the multiset spanning an initial interval of positive integers with multiplicities equal to the prime indices of n in weakly decreasing order.

Original entry on oeis.org

0, 1, 2, 3, 3, 4, 4, 6, 6, 5, 5, 7, 6, 6, 7, 10, 7, 9, 8, 8, 8, 7, 9, 11, 9, 8, 12, 9, 10, 10, 11, 15, 9, 9, 10, 13, 12, 10, 10, 12, 13, 11, 14, 10, 13, 11, 15, 16, 12, 12, 11, 11, 16, 16, 11, 13, 12, 12, 17, 14, 18, 13, 14, 21, 12, 12, 19, 12, 13, 13, 20, 18
Offset: 1

Views

Author

Gus Wiseman, Aug 23 2018

Keywords

Examples

			The multiset spanning an initial interval of positive integers with multiplicities equal to the prime indices of 90 in weakly decreasing order is {1,1,1,2,2,3,3,4}, so a(90) = 1+1+1+2+2+3+3+4 = 17.
		

Crossrefs

Programs

  • Mathematica
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Total/@Array[nrmptn,100]

Formula

a(n) = A056239(A181821(n)).

A195017 If n = Product_{k >= 1} (p_k)^(c_k) where p_k is k-th prime and c_k >= 0 then a(n) = Sum_{k >= 1} c_k*((-1)^(k-1)).

Original entry on oeis.org

0, 1, -1, 2, 1, 0, -1, 3, -2, 2, 1, 1, -1, 0, 0, 4, 1, -1, -1, 3, -2, 2, 1, 2, 2, 0, -3, 1, -1, 1, 1, 5, 0, 2, 0, 0, -1, 0, -2, 4, 1, -1, -1, 3, -1, 2, 1, 3, -2, 3, 0, 1, -1, -2, 2, 2, -2, 0, 1, 2, -1, 2, -3, 6, 0, 1, 1, 3, 0, 1, -1, 1, 1, 0, 1, 1, 0, -1, -1, 5, -4, 2, 1, 0, 2, 0, -2, 4, -1, 0, -2, 3, 0, 2, 0, 4, 1, -1, -1, 4, -1, 1, 1, 2, -1
Offset: 1

Views

Author

Clark Kimberling, Feb 06 2012

Keywords

Comments

Let p(n,x) be the completely additive polynomial-valued function such that p(1,x) = 0 and p(prime(n),x) = x^(n-1), like is defined in A206284 (although here we are not limited to just irreducible polynomials). Then a(n) is the value of the polynomial encoded in such a manner by n, when it is evaluated at x=-1. - The original definition rewritten and clarified by Antti Karttunen, Oct 03 2018
Positions of 0 give the values of n for which the polynomial p(n,x) is divisible by x+1. For related sequences, see the Mathematica section.
Also the number of odd prime indices of n minus the number of even prime indices of n (both counted with multiplicity), where a prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. - Gus Wiseman, Oct 24 2023

Examples

			The sequence can be read from a list of the polynomials:
  p(n,x)      with x = -1, gives a(n)
------------------------------------------
  p(1,x) = 0           0
  p(2,x) = 1x^0        1
  p(3,x) = x          -1
  p(4,x) = 2x^0        2
  p(5,x) = x^2         1
  p(6,x) = 1+x         0
  p(7,x) = x^3        -1
  p(8,x) = 3x^0        3
  p(9,x) = 2x         -2
  p(10,x) = x^2 + 1    2.
(The list runs through all the polynomials whose coefficients are nonnegative integers.)
		

Crossrefs

For other evaluation functions of such encoded polynomials, see A001222, A048675, A056239, A090880, A248663.
Zeros are A325698, distinct A325700.
For sum instead of count we have A366749 = A366531 - A366528.
A000009 counts partitions into odd parts, ranked by A066208.
A035363 counts partitions into even parts, ranked by A066207.
A112798 lists prime indices, reverse A296150, sum A056239.
A257991 counts odd prime indices, even A257992.
A300061 lists numbers with even sum of prime indices, odd A300063.

Programs

  • Mathematica
    b[n_] := Table[x^k, {k, 0, n}];
    f[n_] := f[n] = FactorInteger[n]; z = 200;
    t[n_, m_, k_] := If[PrimeQ[f[n][[m, 1]]] && f[n][[m, 1]]
    == Prime[k], f[n][[m, 2]], 0];
    u = Table[Apply[Plus,
        Table[Table[t[n, m, k], {k, 1, PrimePi[n]}], {m, 1,
          Length[f[n]]}]], {n, 1, z}];
    p[n_, x_] := u[[n]].b[-1 + Length[u[[n]]]]
    Table[p[n, x] /. x -> 0, {n, 1, z/2}]   (* A007814 *)
    Table[p[2 n, x] /. x -> 0, {n, 1, z/2}] (* A001511 *)
    Table[p[n, x] /. x -> 1, {n, 1, z}]     (* A001222 *)
    Table[p[n, x] /. x -> 2, {n, 1, z}]     (* A048675 *)
    Table[p[n, x] /. x -> 3, {n, 1, z}]     (* A090880 *)
    Table[p[n, x] /. x -> -1, {n, 1, z}]    (* A195017 *)
    z = 100; Sum[-(-1)^k IntegerExponent[Range[z], Prime[k]], {k, 1, PrimePi[z]}] (* Friedjof Tellkamp, Aug 05 2024 *)
  • PARI
    A195017(n) = { my(f); if(1==n, 0, f=factor(n); sum(i=1, #f~, f[i,2] * (-1)^(1+primepi(f[i,1])))); } \\ Antti Karttunen, Oct 03 2018

Formula

Totally additive with a(p^e) = e * (-1)^(1+PrimePi(p)), where PrimePi(n) = A000720(n). - Antti Karttunen, Oct 03 2018
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{p prime} = (-1)^(primepi(p)+1)/(p-1) = Sum_{k>=1} (-1)^(k+1)/A006093(k) = A078437 + Sum_{k>=1} (-1)^(k+1)/A036689(k) = 0.6339266524059... . - Amiram Eldar, Sep 29 2023
a(n) = A257991(n) - A257992(n). - Gus Wiseman, Oct 24 2023
a(n) = -Sum_{k=1..pi(n)} (-1)^k * valuation(n, prime(k)). - Friedjof Tellkamp, Aug 05 2024

Extensions

More terms, name changed and example-section edited by Antti Karttunen, Oct 03 2018

A182857 Smallest number that requires exactly n iterations to reach a fixed point under the x -> A181819(x) map.

Original entry on oeis.org

1, 3, 4, 6, 12, 60, 2520, 1286485200, 35933692027611398678865941374040400000
Offset: 0

Views

Author

Matthew Vandermast, Jan 05 2011

Keywords

Comments

a(9) has 296 digits.
Related to Levine's sequence (A011784): A011784(n) = A001222(a(n)) = A001221(a(n+1)) = A051903(a(n+2)) = A071625(a(n+2)). Also see A182858.
Values of n where A182850(n) increases to a record.
The multiplicity of prime(k) in a(n+1) is the k-th largest prime index of a(n), which is A296150(a(n),k). - Gus Wiseman, May 13 2018

Examples

			From _Gus Wiseman_, May 13 2018: (Start)
Like A001462 the following sequence of multisets whose Heinz numbers belong to this sequence is a run-length describing sequence, as the number of k's in row n + 1 is equal to the k-th term of row n.
{2}
{1,1}
{1,2}
{1,1,2}
{1,1,2,3}
{1,1,1,2,2,3,4}
{1,1,1,1,2,2,2,3,3,4,4,5,6,7}
{1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,5,5,5,5,6,6,6,7,7,7,8,8,9,9,10,10,11,12,13,14}
(End)
		

Crossrefs

Programs

  • Mathematica
    Prepend[Function[m,Times@@Prime/@m]/@NestList[Join@@Table[Table[i,{Reverse[#][[i]]}],{i,Length[#]}]&,{2},8],1] (* Gus Wiseman, May 13 2018 *)

Formula

For n > 0, a(n) = A181819(a(n+1)). For n > 1, a(n) = A181821(a(n-1)).
Previous Showing 11-20 of 340 results. Next