cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 50 results. Next

A387133 Number of ways to choose a sequence of distinct integer partitions, one of each prime factor of n (with multiplicity).

Original entry on oeis.org

1, 2, 3, 2, 7, 6, 15, 0, 6, 14, 56, 6, 101, 30, 21, 0, 297, 12, 490, 14, 45, 112, 1255, 0, 42, 202, 6, 30, 4565, 42, 6842, 0, 168, 594, 105, 12, 21637, 980, 303, 0, 44583, 90, 63261, 112, 42, 2510, 124754, 0, 210, 84, 891, 202, 329931, 12, 392, 0, 1470, 9130
Offset: 1

Views

Author

Gus Wiseman, Aug 26 2025

Keywords

Examples

			The prime factors of 9 are (3,3), and the a(9) = 6 choices are:
  ((3),(2,1))
  ((3),(1,1,1))
  ((2,1),(3))
  ((2,1),(1,1,1))
  ((1,1,1),(3))
  ((1,1,1),(2,1))
		

Crossrefs

For prime factors instead of partitions we have A008966, see A355741.
Twice partitions of this type are counted by A296122.
For prime indices instead of factors we have A387110, see A387136.
For strict partitions and prime indices we have A387115.
For constant partitions and prime indices we have A387120.
Positions of zero are A387326, for indices apparently A276079 (complement A276078).
Allowing repeated partitions gives A387327, see A299200, A357977.
A000041 counts integer partitions, strict A000009.
A003963 multiplies together prime indices.
A112798 lists prime indices, row sums A056239 or A066328, lengths A001222.
A120383 lists numbers divisible by all of their prime indices.
A289509 lists numbers with relatively prime prime indices.

Programs

  • Mathematica
    Table[Length[Select[Tuples[IntegerPartitions/@Flatten[ConstantArray@@@FactorInteger[n]]],UnsameQ@@#&]],{n,30}]

A119442 Triangle read by rows: row n lists number of unordered partitions of n into k parts which are partition numbers (members of A000041).

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 5, 7, 2, 1, 7, 11, 7, 2, 1, 11, 26, 19, 7, 2, 1, 15, 40, 38, 19, 7, 2, 1, 22, 83, 78, 54, 19, 7, 2, 1, 30, 120, 168, 102, 54, 19, 7, 2, 1, 42, 223, 301, 244, 134, 54, 19, 7, 2, 1, 56, 320, 557, 471, 292, 134, 54, 19, 7, 2, 1, 77, 566, 1035, 1000, 623, 356, 134, 54
Offset: 0

Views

Author

Alford Arnold, May 19 2006

Keywords

Comments

A060642 describes the ordered case.
Number of twice-partitions of n of length k. A twice-partition of n is a choice of a partition of each part in a partition of n. - Gus Wiseman, Mar 23 2018

Examples

			Triangle begins:
   1
   2   1
   3   2   1
   5   7   2   1
   7  11   7   2   1
  11  26  19   7   2   1
  15  40  38  19   7   2   1
  22  83  78  54  19   7   2   1
  30 120 168 102  54  19   7   2   1
  42 223 301 244 134  54  19   7   2   1
  56 320 557 471 292 134  54  19   7   2   1
The T(5,3) = 7 twice-partitions: (3)(1)(1), (21)(1)(1), (111)(1)(1), (2)(2)(1), (2)(11)(1), (11)(2)(1), (11)(11)(1). - _Gus Wiseman_, Mar 23 2018
		

Crossrefs

Programs

  • Mathematica
    nn=12;
    ser=Product[1/(1-PartitionsP[n]x^n y),{n,nn}];
    Table[SeriesCoefficient[ser,{x,0,n},{y,0,k}],{n,nn},{k,n}] (* Gus Wiseman, Mar 23 2018 *)

Formula

G.f.: 1/Product_{k>0} (1-y*A000041(k)*x^k). - Vladeta Jovovic, May 21 2006

Extensions

More terms and better definition from Vladeta Jovovic, May 21 2006

A384010 Heinz numbers of integer partitions such that it is possible to choose a family of disjoint strict partitions, one of each conjugate part.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 18, 24, 27, 30, 32, 36, 48, 54, 60, 64, 72, 81, 90, 96, 108, 120, 128, 144, 150, 162, 180, 192
Offset: 1

Views

Author

Gus Wiseman, May 23 2025

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The prime indices of 96 are {1,1,1,1,1,2}, conjugate (6,1), disjoint family (4,2,1), so 96 is in the sequence.
The terms together with their prime indices begin:
    1: {}
    2: {1}
    4: {1,1}
    6: {1,2}
    8: {1,1,1}
   12: {1,1,2}
   16: {1,1,1,1}
   18: {1,2,2}
   24: {1,1,1,2}
   27: {2,2,2}
   30: {1,2,3}
   32: {1,1,1,1,1}
   36: {1,1,2,2}
   48: {1,1,1,1,2}
   54: {1,2,2,2}
   60: {1,1,2,3}
   64: {1,1,1,1,1,1}
		

Crossrefs

For multiplicities instead of indices we have A382525.
These partitions are counted by A383708, without ones A383533, complement A383711.
These are the positions of positive terms in A384005.
The complement is A384011, conjugate A383710.
A000041 counts integer partitions, strict A000009.
A048767 is the Look-and-Say transform, fixed points A048768, counted by A217605.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A122111 represent conjugation in terms of Heinz numbers.
A239455 counts Look-and-Say or section-sum partitions, ranks A351294 or A381432.
A351293 counts non-Look-and-Say or non-section-sum partitions, ranks A351295 or A381433.

Programs

  • Mathematica
    pof[y_]:=Select[Join@@@Tuples[IntegerPartitions/@y],UnsameQ@@#&];
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],pof[conj[prix[#]]]!={}&]

A384350 Number of subsets of {1..n} containing at least one element that is a sum of distinct non-elements.

Original entry on oeis.org

0, 0, 0, 1, 4, 13, 33, 81, 183, 402, 856, 1801, 3721, 7646, 15567, 31575
Offset: 0

Views

Author

Gus Wiseman, Jun 05 2025

Keywords

Comments

Conjecture: Also the number of subsets of {1..n} such that it is possible in more than one way to choose a disjoint family of strict integer partitions, one of each element.

Examples

			For the set s = {1,5} we have 5 = 2+3, so s is counted under a(5).
The a(0) = 0 through a(5) = 13 subsets:
  .  .  .  {3}  {3}    {3}
                {4}    {4}
                {2,4}  {5}
                {3,4}  {1,5}
                       {2,4}
                       {2,5}
                       {3,4}
                       {3,5}
                       {4,5}
                       {1,4,5}
                       {2,3,5}
                       {2,4,5}
                       {3,4,5}
		

Crossrefs

The complement is counted by A326080, allowing repeats A326083.
For strict partitions of n instead of subsets of {1..n} we have A384318, ranks A384322.
First differences are A384391.
A048767 is the Look-and-Say transform, fixed points A048768, counted by A217605.
A179009 counts maximally refined strict partitions, ranks A383707.
A239455 counts Look-and-Say or section-sum partitions, ranks A351294 or A381432.
A351293 counts non-Look-and-Say or non-section-sum partitions, ranks A351295 or A381433.
A383706 counts ways to choose disjoint strict partitions of prime indices, non-disjoint A357982, non-strict A299200.

Programs

  • Mathematica
    nonsets[y_]:=If[Length[y]==0,{},Rest[Subsets[Complement[Range[Max@@y],y]]]];
    Table[Length[Select[Subsets[Range[n]],Intersection[#,Total/@nonsets[#]]!={}&]],{n,0,10}]

A387136 Number of ways to choose a sequence of distinct prime factors, one of each prime index of 2n - 1.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 2, 1, 1, 1, 0, 1, 0, 0, 2, 1, 1, 1, 2, 1, 1, 2, 0, 2, 0, 1, 1, 1, 0, 1, 2, 0, 1, 1, 1, 2, 2, 0, 1, 2, 0, 1, 1, 1, 2, 1, 1, 1, 1, 0, 2, 1, 0, 2, 1, 1, 3, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 2, 2, 2, 2, 2, 0, 2, 2, 0, 1, 1, 0, 1, 2, 1, 2, 2, 0, 2
Offset: 1

Views

Author

Gus Wiseman, Aug 30 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 4537 are {6,70}, with choices (2,5), (2,7), (3,2), (3,5), (3,7). Since 4537 = 2 * 2269 - 1, we have a(2269) = 5.
		

Crossrefs

Here we use the version with alternating zeros (put n instead of 2n - 1 in the name).
Twice partitions of this type are counted by A296122.
Positions of zero are A355529, complement A368100.
For divisors instead of prime factors we have A355739.
Allowing repeated choices gives A355741.
For partitions instead of prime factors we have A387110.
For initial intervals instead of prime factors we have A387111.
For strict partitions instead of prime factors we have A387115, disjoint case A383706.
For constant partitions instead of prime factors we have A387120.
A000041 counts integer partitions, strict A000009.
A003963 multiplies together prime indices.
A112798 lists prime indices, row sums A056239 or A066328, lengths A001222.
A120383 lists numbers divisible by all of their prime indices.
A289509 lists numbers with relatively prime prime indices.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Select[Tuples[If[#==1,{},First/@FactorInteger[#]]&/@prix[2n-1]],UnsameQ@@#&]],{n,100}]

A294019 Number of same-trees whose leaves are the parts of the integer partition with Heinz number n.

Original entry on oeis.org

0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 0, 0, 2, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 3, 1, 0, 0, 2, 1, 0, 1, 0, 0, 0, 1, 3, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 2, 3, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 2, 0, 1, 4, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 8
Offset: 1

Views

Author

Gus Wiseman, Feb 07 2018

Keywords

Comments

By convention a(1) = 0.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The a(108) = 8 same-trees: ((22)(2(11))), ((22)((11)2)), ((2(11))(22)), (((11)2)(22)), (222(11)), (22(11)2), (2(11)22), ((11)222).
From _Antti Karttunen_, Sep 22 2018: (Start)
For 12 = prime(1)^2 * prime(2)^1, we have the following two cases: 2(11) and (11)2, thus a(12) = 2.
For 36 = prime(1)^2 * prime(2)^2, we have the following cases: (11)22, 2(11)2, 22(11), thus a(36) = 3.
For 144  = prime(1)^4 * prime(2)^2, we have the following 14 cases: (1111)(22), (22)(1111); ((11)(11))(22), (22)((11)(11)); (11)(11)22, (11)2(11)2, (11)22(11), 2(11)2(11), 2(11)(11)2, 22(11)(11); ((11)2)(11(2)), ((11)2)(2(11)), (2(11))((11)2), (2(11))(2(11)), thus a(144) = 14.
For n = 8775 = 3^3 * 5^2 * 13^1 = prime(2)^3 * prime(3)^2 * prime(6)^1, we have the following six cases: (222)(33)6, (222)6(33), (33)(222)6, (33)6(222), 6(222)(33), 6(33)(222), thus a(8775) = 6.
(End)
		

Crossrefs

Programs

  • Mathematica
    nn=120;
    ptns=Table[If[n===1,{},Join@@Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]],{n,nn}];
    tris=Join@@Map[Tuples[IntegerPartitions/@#]&,ptns];
    qci[y_]:=qci[y]=If[Length[y]===1,1,Sum[Times@@qci/@t,{t,Select[tris,And[Length[#]>1,Sort[Join@@#,Greater]===y,SameQ@@Total/@#]&]}]];
    qci/@ptns
  • PARI
    A056239(n) = { my(f); if(1==n, 0, f=factor(n); sum(i=1, #f~, f[i,2] * primepi(f[i,1]))); }
    productifbalancedfactorization(v) = if(!#v, 1, my(pw=A056239(v[1]), m=1); for(i=1,#v,if(A056239(v[i])!=pw,return(0), m *= A294019(v[i]))); (m));
    A294019aux(n, m, facs) = if(1==n, productifbalancedfactorization(Vec(facs)), my(s=0, newfacs); fordiv(n, d, if((d>1)&&(d<=m), newfacs = List(facs); listput(newfacs,d); s += A294019aux(n/d, m, newfacs))); (s));
    A294019(n) = if(1==n,0,if(isprime(n),1,A294019aux(n, n-1, List([]))));
    \\ A memoized implementation:
    map294019 = Map();
    A294019(n) = if(1==n,0,if(isprime(n),1,if(mapisdefined(map294019,n), mapget(map294019,n), my(v=A294019aux(n, n-1, List([]))); mapput(map294019,n,v); (v)))); \\ Antti Karttunen, Sep 22 2018

Formula

A281145(n) = Sum_{i=1..A000041(n)} a(A215366(n,i)).
a(p^n) = A006241(n) for any prime p and exponent n >= 1. - Antti Karttunen, Sep 22 2018

A384348 Number of integer partitions of n with no proper way to choose disjoint strict partitions of each part.

Original entry on oeis.org

1, 1, 2, 2, 4, 6, 7, 11, 17, 25, 30, 44, 61, 82, 113, 141, 193, 249, 327, 422, 548, 682, 881, 1106, 1400, 1751
Offset: 0

Views

Author

Gus Wiseman, May 30 2025

Keywords

Comments

By "proper" we exclude the case of all singletons, which is disjoint when n is squarefree.

Examples

			For the partition y = (5,4,2,1) we have the following proper ways to choose strict partitions of each part:
  ((5),(3,1),(2),(1))
  ((4,1),(4,2),(1))
  ((4,1),(3,1),(2),(1))
  ((3,2),(4),(2),(1))
  ((3,2),(3,1),(2),(1))
But none of this is disjoint, so y is counted under a(12).
The a(1) = 1 through a(8) = 17 partitions:
  (1)  (2)   (21)   (22)    (32)     (222)     (322)      (332)
       (11)  (111)  (31)    (41)     (321)     (331)      (422)
                    (211)   (221)    (411)     (421)      (431)
                    (1111)  (311)    (2211)    (511)      (521)
                            (2111)   (3111)    (2221)     (611)
                            (11111)  (21111)   (3211)     (2222)
                                     (111111)  (4111)     (3221)
                                               (22111)    (3311)
                                               (31111)    (4211)
                                               (211111)   (5111)
                                               (1111111)  (22211)
                                                          (32111)
                                                          (41111)
                                                          (221111)
                                                          (311111)
                                                          (2111111)
                                                          (11111111)
		

Crossrefs

The strict case is A179009, ranked by A383707.
This is the proper version of A383710, odd case A383711.
This is the proper complement of A383708, odd case A383533.
The complement is counted by A384317, ranks A384321.
The strict version for at least one proper choice is A384318, ranked by A384322.
For just one proper choice we have A384319, ranked by A384390.
For two choices we have A384323, ranks A384347 = positions of 2 in A383706.
These partitions are ranked by A384349.
For more than one proper choice we have A384395, ranked by A384393.
A000041 counts integer partitions, strict A000009.
A048767 is the Look-and-Say transform, fixed points A048768, counted by A217605.
A239455 counts Look-and-Say partitions, ranks A351294 or A381432.
A351293 counts non-Look-and-Say partitions, ranks A351295 or A381433.

Programs

  • Mathematica
    pofprop[y_]:=Select[DeleteCases[Join@@@Tuples[IntegerPartitions/@y],y],UnsameQ@@#&];
    Table[Length[Select[IntegerPartitions[n],Length[pofprop[#]]==0&]],{n,0,15}]

A384391 Number of subsets of {1..n} containing n and some element that is a sum of distinct non-elements.

Original entry on oeis.org

0, 0, 1, 3, 9, 20, 48, 102, 219, 454, 945, 1920, 3925, 7921, 16008
Offset: 0

Views

Author

Gus Wiseman, Jun 06 2025

Keywords

Examples

			The a(0) = 0 through a(6) = 20 subsets:
  .  .  .  {3}  {4}    {5}      {6}
                {2,4}  {1,5}    {1,6}
                {3,4}  {2,5}    {2,6}
                       {3,5}    {3,6}
                       {4,5}    {4,6}
                       {1,4,5}  {5,6}
                       {2,3,5}  {1,3,6}
                       {2,4,5}  {1,5,6}
                       {3,4,5}  {2,3,6}
                                {2,4,6}
                                {2,5,6}
                                {3,4,6}
                                {3,5,6}
                                {4,5,6}
                                {1,3,5,6}
                                {1,4,5,6}
                                {2,3,4,6}
                                {2,3,5,6}
                                {2,4,5,6}
                                {3,4,5,6}
		

Crossrefs

The complement with n is counted by A179822, first differences of A326080.
Partial sums are A384350.
A048767 is the Look-and-Say transform, fixed points A048768, counted by A217605.
A179009 counts maximally refined strict partitions, ranks A383707.
A239455 counts Look-and-Say or section-sum partitions, ranks A351294 or A381432.
A351293 counts non-Look-and-Say or non-section-sum partitions, ranks A351295 or A381433.
A383706 counts ways to choose disjoint strict partitions of prime indices, non-disjoint A357982, non-strict A299200.

Programs

  • Mathematica
    nonsets[y_]:=If[Length[y]==0,{},Rest[Subsets[Complement[Range[Max@@y],y]]]];
    Table[Length[Select[Subsets[Range[n]],MemberQ[#,n]&&Intersection[#,Total/@nonsets[#]]!={}&]],{n,0,10}]

A384392 Number of integer partitions of n whose distinct parts are maximally refined.

Original entry on oeis.org

1, 1, 2, 2, 4, 6, 7, 10, 14, 20, 24, 33, 41, 55, 70, 88, 110, 140, 171, 214, 265, 324, 397, 485, 588, 711, 861, 1032, 1241, 1486, 1773
Offset: 0

Views

Author

Gus Wiseman, Jun 07 2025

Keywords

Comments

Given any partition, the following are equivalent:
1) The distinct parts are maximally refined.
2) Every strict partition of a part contains a part. In other words, if y is the set of parts and z is any strict partition of any element of y, then z must contain at least one element from y.
3) No part is a sum of distinct non-parts.

Examples

			The a(1) = 1 through a(8) = 14 partitions:
  (1)  (2)   (21)   (22)    (32)     (222)     (322)      (332)
       (11)  (111)  (31)    (41)     (321)     (331)      (431)
                    (211)   (221)    (411)     (421)      (521)
                    (1111)  (311)    (2211)    (2221)     (2222)
                            (2111)   (3111)    (3211)     (3221)
                            (11111)  (21111)   (4111)     (3311)
                                     (111111)  (22111)    (4211)
                                               (31111)    (22211)
                                               (211111)   (32111)
                                               (1111111)  (41111)
                                                          (221111)
                                                          (311111)
                                                          (2111111)
                                                          (11111111)
		

Crossrefs

The strict case is A179009, ranks A383707.
For subsets instead of partitions we have A326080, complement A384350.
These partitions are ranked by A384320, complement A384321.
A048767 is the Look-and-Say transform, fixed points A048768, counted by A217605.
A239455 counts Look-and-Say or section-sum partitions, ranks A351294 or A381432.
A351293 counts non-Look-and-Say or non-section-sum partitions, ranks A351295 or A381433.

Programs

  • Mathematica
    nonsets[y_]:=If[Length[y]==0,{},Rest[Subsets[Complement[Range[Max@@y],y]]]];
    Table[Length[Select[IntegerPartitions[n],Intersection[#,Total/@nonsets[#]]=={}&]],{n,0,15}]

A387177 Numbers whose prime indices have choosable sets of strict integer partitions. Positions of nonzero terms in A387115.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 46, 47, 49, 50, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 98
Offset: 1

Views

Author

Gus Wiseman, Aug 29 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We say that a sequence of nonempty sets is choosable iff it is possible to choose a different element from each set. For example, ({1,2},{1},{1,3}) is choosable because we have the choice (2,1,3), but ({1},{2},{1,3},{2,3}) is not.

Examples

			The prime indices of 50 are {1,3,3}, and {(1),(3),(2,1)} is a valid choice of distinct strict partitions, so 50 is in the sequence.
		

Crossrefs

The version for all partitions appears to be A276078, counted by A052335.
The complement for all partitions appears to be A276079, counted by A387134.
The complement for divisors is A355740, counted by A370320.
Twice-partitions of this type (into distinct strict partitions) are counted by A358914.
The version for divisors is A368110, counted by A239312.
The version for initial intervals is A387112, counted by A238873, see A387111.
The complement for initial intervals is A387113, counted by A387118.
These are the positions of nonzero terms in A387115.
The complement is A387176.
Partitions of this type are counted by A387178, complement A387137.
The complement for constant partitions is A387180, counted by A387329, see A387120.
The version for constant partitions is A387181, counted by A387330.
A000041 counts integer partitions, strict A000009.
A003963 multiplies together the prime indices of n.
A112798 lists prime indices, row sums A056239 or A066328, lengths A001222.
A289509 lists numbers with relatively prime prime indices.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    strptns[n_]:=Select[IntegerPartitions[n],UnsameQ@@#&];
    Select[Range[100],Select[Tuples[strptns/@prix[#]],UnsameQ@@#&]!={}&]
Previous Showing 31-40 of 50 results. Next