cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 68 results. Next

A365658 Triangle read by rows where T(n,k) is the number of integer partitions of n with k distinct possible sums of nonempty submultisets.

Original entry on oeis.org

1, 1, 1, 1, 0, 2, 1, 1, 1, 2, 1, 0, 2, 0, 4, 1, 1, 3, 0, 1, 5, 1, 0, 3, 0, 3, 0, 8, 1, 1, 3, 2, 2, 1, 2, 10, 1, 0, 5, 0, 3, 0, 5, 0, 16, 1, 1, 4, 0, 6, 2, 4, 2, 2, 20, 1, 0, 5, 0, 5, 0, 8, 0, 6, 0, 31, 1, 1, 6, 2, 3, 6, 6, 1, 4, 4, 4, 39, 1, 0, 6, 0, 6, 0, 12, 0, 8, 0, 13, 0, 55
Offset: 1

Views

Author

Gus Wiseman, Sep 16 2023

Keywords

Comments

Conjecture: Positions of strictly positive rows are given by A048166.

Examples

			Triangle begins:
  1
  1  1
  1  0  2
  1  1  1  2
  1  0  2  0  4
  1  1  3  0  1  5
  1  0  3  0  3  0  8
  1  1  3  2  2  1  2 10
  1  0  5  0  3  0  5  0 16
  1  1  4  0  6  2  4  2  2 20
  1  0  5  0  5  0  8  0  6  0 31
  1  1  6  2  3  6  6  1  4  4  4 39
  1  0  6  0  6  0 12  0  8  0 13  0 55
  1  1  6  0  6  3 16  3  5  3  7  8  5 71
		

Crossrefs

Row sums are A000041.
Last column n = k is A126796.
Column k = 3 appears to be A137719.
This is the triangle for the rank statistic A299701.
Central column n = 2k is A365660.
A000009 counts subsets summing to n.
A000124 counts distinct possible sums of subsets of {1..n}.
A365543 counts partitions with a submultiset summing to k, strict A365661.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Length[Union[Total/@Rest[Subsets[#]]]]==k&]],{n,10},{k,n}]

A304793 Number of distinct positive subset-sums of the integer partition with Heinz number n.

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 3, 2, 3, 1, 4, 1, 3, 3, 4, 1, 5, 1, 5, 3, 3, 1, 5, 2, 3, 3, 5, 1, 6, 1, 5, 3, 3, 3, 6, 1, 3, 3, 6, 1, 7, 1, 5, 5, 3, 1, 6, 2, 5, 3, 5, 1, 7, 3, 7, 3, 3, 1, 7, 1, 3, 4, 6, 3, 7, 1, 5, 3, 6, 1, 7, 1, 3, 5, 5, 3, 7, 1, 7, 4, 3, 1, 8, 3, 3, 3, 7, 1, 8, 3, 5, 3, 3, 3, 7, 1, 5, 5, 8, 1, 7, 1, 7, 7
Offset: 1

Views

Author

Gus Wiseman, May 18 2018

Keywords

Comments

A positive integer n is a positive subset-sum of an integer partition y if there exists a submultiset of y with sum n. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
a(n) <= A000005(n).
One less than the number of distinct values obtained when A056239 is applied to all divisors of n. - Antti Karttunen, Jul 01 2018

Examples

			The positive subset-sums of (4,3,1) are {1, 3, 4, 5, 7, 8} so a(70) = 6.
The positive subset-sums of (5,1,1,1) are {1, 2, 3, 5, 6, 7, 8} so a(88) = 7.
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Union[Total/@Rest[Subsets[Join@@Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]]],{n,100}]
  • PARI
    up_to = 65537;
    A056239(n) = { my(f); if(1==n, 0, f=factor(n); sum(i=1, #f~, f[i,2] * primepi(f[i,1]))); }
    v056239 = vector(up_to,n,A056239(n));
    A304793(n) = { my(m=Map(),s,k=0); fordiv(n,d,if(!mapisdefined(m,s = v056239[d]), mapput(m,s,s); k++)); (k-1); }; \\ Antti Karttunen, Jul 01 2018

Extensions

More terms from Antti Karttunen, Jul 01 2018

A299729 Heinz numbers of non-knapsack partitions.

Original entry on oeis.org

12, 24, 30, 36, 40, 48, 60, 63, 70, 72, 80, 84, 90, 96, 108, 112, 120, 126, 132, 140, 144, 150, 154, 156, 160, 165, 168, 180, 189, 192, 198, 200, 204, 210, 216, 220, 224, 228, 240, 252, 264, 270, 273, 276, 280, 286, 288, 300, 308, 312, 315, 320, 324, 325
Offset: 1

Views

Author

Gus Wiseman, Feb 17 2018

Keywords

Comments

An integer partition is non-knapsack if there exist two different submultisets with the same sum. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			12 is the Heinz number of (2,1,1) which is not knapsack because 2 = 1 + 1.
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],!UnsameQ@@Plus@@@Union[Rest@Subsets[primeMS[#]]]&]

A365924 Number of incomplete integer partitions of n, meaning not every number from 0 to n is the sum of some submultiset.

Original entry on oeis.org

0, 0, 1, 1, 3, 3, 6, 7, 12, 14, 22, 25, 38, 46, 64, 76, 106, 124, 167, 199, 261, 309, 402, 471, 604, 714, 898, 1053, 1323, 1542, 1911, 2237, 2745, 3201, 3913, 4536, 5506, 6402, 7706, 8918, 10719, 12364, 14760, 17045, 20234, 23296, 27600, 31678, 37365, 42910, 50371, 57695, 67628, 77300, 90242, 103131, 119997
Offset: 0

Views

Author

Gus Wiseman, Sep 26 2023

Keywords

Comments

The complement (complete partitions) is A126796.

Examples

			The a(0) = 0 through a(8) = 12 partitions:
  .  .  (2)  (3)  (4)    (5)    (6)      (7)      (8)
                  (2,2)  (3,2)  (3,3)    (4,3)    (4,4)
                  (3,1)  (4,1)  (4,2)    (5,2)    (5,3)
                                (5,1)    (6,1)    (6,2)
                                (2,2,2)  (3,2,2)  (7,1)
                                (4,1,1)  (3,3,1)  (3,3,2)
                                         (5,1,1)  (4,2,2)
                                                  (4,3,1)
                                                  (5,2,1)
                                                  (6,1,1)
                                                  (2,2,2,2)
                                                  (5,1,1,1)
		

Crossrefs

For parts instead of sums we have A047967/A365919, ranks A080259/A055932.
The complement is A126796, ranks A325781, strict A188431.
These partitions have ranks A365830.
The strict case is A365831.
Row sums of A365923 without the first column, strict A365545.
A000041 counts integer partitions, strict A000009.
A046663 counts partitions w/o a submultiset summing to k, strict A365663.
A276024 counts positive subset-sums of partitions, strict A284640.
A325799 counts non-subset-sums of prime indices.
A364350 counts combination-free strict partitions.
A365543 counts partitions with a submultiset summing to k, strict A365661.

Programs

  • Mathematica
    nmz[y_]:=Complement[Range[Total[y]],Total/@Subsets[y]];
    Table[Length[Select[IntegerPartitions[n],Length[nmz[#]]>0&]],{n,0,15}]

Formula

a(n) = A000041(n) - A126796(n).

A301899 Heinz numbers of strict knapsack partitions. Squarefree numbers such that every divisor has a different Heinz weight A056239(d).

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 46, 47, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 71, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 102, 103, 105, 106, 107, 109
Offset: 1

Views

Author

Gus Wiseman, Mar 28 2018

Keywords

Comments

An integer partition is knapsack if every distinct submultiset has a different sum. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			42 is the Heinz number of (4,2,1) which is strict and knapsack, so is in the sequence. 45 is the Heinz number of (3,2,2) which is knapsack but not strict, so is not in the sequence. 30 is the Heinz number of (3,2,1) which is strict but not knapsack, so is not in the sequence.
Sequence of strict knapsack partitions begins: (), (1), (2), (3), (21), (4), (31), (5), (6), (41), (32), (7), (8), (42), (51), (9), (61).
		

Crossrefs

Programs

  • Mathematica
    wt[n_]:=If[n===1,0,Total[Cases[FactorInteger[n],{p_,k_}:>k*PrimePi[p]]]];
    Select[Range[100],SquareFreeQ[#]&&UnsameQ@@wt/@Divisors[#]&]

Formula

Intersection of A299702 and A005117.

A365831 Number of incomplete strict integer partitions of n, meaning not every number from 0 to n is the sum of some submultiset.

Original entry on oeis.org

0, 0, 1, 1, 2, 3, 3, 4, 6, 8, 9, 11, 13, 16, 21, 25, 31, 36, 43, 50, 59, 69, 82, 96, 113, 131, 155, 179, 208, 239, 276, 315, 362, 414, 472, 539, 614, 698, 795, 902, 1023, 1158, 1311, 1479, 1672, 1881, 2118, 2377, 2671, 2991, 3354, 3748, 4194, 4679, 5223, 5815
Offset: 0

Views

Author

Gus Wiseman, Sep 28 2023

Keywords

Examples

			The strict partition (14,5,4,2,1) has no subset summing to 13 so is counted under a(26).
The a(2) = 1 through a(10) = 9 strict partitions:
  (2)  (3)  (4)    (5)    (6)    (7)    (8)      (9)      (10)
            (3,1)  (3,2)  (4,2)  (4,3)  (5,3)    (5,4)    (6,4)
                   (4,1)  (5,1)  (5,2)  (6,2)    (6,3)    (7,3)
                                 (6,1)  (7,1)    (7,2)    (8,2)
                                        (4,3,1)  (8,1)    (9,1)
                                        (5,2,1)  (4,3,2)  (5,3,2)
                                                 (5,3,1)  (5,4,1)
                                                 (6,2,1)  (6,3,1)
                                                          (7,2,1)
		

Crossrefs

For parts instead of sums we have ranks A080259, A055932.
The strict complement is A188431, non-strict A126796 (ranks A325781).
Row sums of A365545 without the first column, non-strict A365923.
The non-strict version is A365924, ranks A365830.
A000041 counts integer partitions, strict A000009.
A046663 counts partitions w/o a submultiset summing to k, strict A365663.
A276024 counts positive subset-sums of partitions, strict A284640.
A325799 counts non-subset-sums of prime indices.
A365543 counts partitions with a submultiset summing to k, strict A365661.

Programs

  • Mathematica
    nmz[y_]:=Complement[Range[Total[y]], Total/@Subsets[y]];
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&Length[nmz[#]]>0&]],{n,0,15}]

A371731 Heinz numbers of non-biquanimous integer partitions. Numbers without a divisor having the same sum of prime indices as the quotient.

Original entry on oeis.org

2, 3, 5, 6, 7, 8, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80
Offset: 1

Views

Author

Gus Wiseman, Apr 07 2024

Keywords

Comments

These partitions are counted by A371795, even case A006827.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
A finite multiset of numbers is defined to be biquanimous iff it can be partitioned into two multisets with equal sums. Biquanimous partitions are counted by A002219 aerated and ranked by A357976.

Examples

			The prime indices of 975 are {2,3,3,6}, which are not biquanimous, so 975 is in the sequence.
The prime indices of 900 are {1,1,2,2,3,3}, which can be partitioned into {{1,2,3},{1,2,3}} or {{3,3},{1,1,2,2}}, so 900 is not in the sequence.
		

Crossrefs

The complement is A357976, counted by A002219.
For prime signature instead of indices we have A371782, complement A371781.
Partitions of this type are counted by A371795, even case A006827.
A108917 counts knapsack partitions, ranks A299702, strict A275972.
A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
A237258 aerated counts biquanimous strict partitions, ranks A357854.
A321142 and A371794 count non-biquanimous strict partitions.
A321451 counts non-quanimous partitions, ranks A321453.
A321452 counts quanimous partitions, ranks A321454.
A366754 counts non-knapsack partitions, ranks A299729, strict A316402.
A371737 counts quanimous strict partitions, complement A371736.
A371783 counts k-quanimous partitions.
A371789 counts non-quanimous sets, differences A371790.
A371791 counts biquanimous sets, differences A232466.
A371792 counts non-biquanimous sets, differences A371793.
A371796 counts quanimous sets, differences A371797.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    biqQ[y_]:=MemberQ[Total/@Subsets[y],Total[y]/2];
    Select[Range[100],Not@*biqQ@*prix]

Formula

Numbers n without a divisor d|n such that A056239(d) = A056239(n/d).

A365830 Heinz numbers of incomplete integer partitions, meaning not every number from 0 to A056239(n) is the sum of some submultiset.

Original entry on oeis.org

3, 5, 7, 9, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25, 26, 27, 28, 29, 31, 33, 34, 35, 37, 38, 39, 41, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89
Offset: 1

Views

Author

Gus Wiseman, Sep 26 2023

Keywords

Comments

First differs from A325798 in lacking 156.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
The complement (complete partitions) is A325781.

Examples

			The terms together with their prime indices begin:
   3: {2}
   5: {3}
   7: {4}
   9: {2,2}
  10: {1,3}
  11: {5}
  13: {6}
  14: {1,4}
  15: {2,3}
  17: {7}
  19: {8}
  21: {2,4}
  22: {1,5}
  23: {9}
  25: {3,3}
  26: {1,6}
  27: {2,2,2}
  28: {1,1,4}
For example, the submultisets of (1,1,2,6) (right column) and their sums (left column) are:
   0: ()
   1: (1)
   2: (2)  or (11)
   3: (12)
   4: (112)
   6: (6)
   7: (16)
   8: (26) or (116)
   9: (126)
  10: (1126)
But 5 is missing, so 156 is in the sequence.
		

Crossrefs

For prime indices instead of sums we have A080259, complement of A055932.
The complement is A325781, counted by A126796, strict A188431.
Positions of nonzero terms in A325799, complement A304793.
These partitions are counted by A365924, strict A365831.
A056239 adds up prime indices, row sums of A112798.
A276024 counts positive subset-sums of partitions, strict A284640
A299701 counts distinct subset-sums of prime indices.
A365918 counts distinct non-subset-sums of partitions, strict A365922.
A365923 counts partitions by distinct non-subset-sums, strict A365545.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    nmz[y_]:=Complement[Range[Total[y]],Total/@Subsets[y]];
    Select[Range[100],Length[nmz[prix[#]]]>0&]

A347460 Number of distinct possible alternating products of factorizations of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 2, 4, 1, 4, 1, 4, 2, 2, 1, 6, 2, 2, 3, 4, 1, 5, 1, 5, 2, 2, 2, 7, 1, 2, 2, 6, 1, 5, 1, 4, 4, 2, 1, 8, 2, 4, 2, 4, 1, 5, 2, 6, 2, 2, 1, 10, 1, 2, 4, 6, 2, 5, 1, 4, 2, 5, 1, 10, 1, 2, 4, 4, 2, 5, 1, 8, 4, 2, 1, 10, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Oct 06 2021

Keywords

Comments

We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)).
A factorization of n is a weakly increasing sequence of positive integers > 1 with product n.

Examples

			The a(n) alternating products for n = 1, 4, 8, 12, 24, 30, 36, 48, 60, 120:
  1  4  8    12   24   30    36   48    60    120
     1  2    3    6    10/3  9    12    15    30
        1/2  3/4  8/3  5/6   4    16/3  20/3  40/3
             1/3  2/3  3/10  1    3     15/4  15/2
                  3/8  2/15  4/9  3/4   12/5  24/5
                  1/6        1/4  1/3   3/5   10/3
                             1/9  3/16  5/12  5/6
                                  1/12  4/15  8/15
                                        3/20  3/10
                                        1/15  5/24
                                              2/15
                                              3/40
                                              1/30
		

Crossrefs

Positions of 1's are 1 and A000040.
Positions of 2's appear to be A001358.
Positions of 3's appear to be A030078.
Dominates A038548, the version for reverse-alternating product.
Counting only integers gives A046951.
The even-length case is A072670.
The version for partitions (not factorizations) is A347461, reverse A347462.
The odd-length case is A347708.
The length-3 case is A347709.
A001055 counts factorizations (strict A045778, ordered A074206).
A056239 adds up prime indices, row sums of A112798.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A108917 counts knapsack partitions, ranked by A299702.
A276024 counts distinct positive subset-sums of partitions, strict A284640.
A292886 counts knapsack factorizations, by sum A293627.
A299701 counts distinct subset-sums of prime indices, positive A304793.
A301957 counts distinct subset-products of prime indices.
A304792 counts distinct subset-sums of partitions.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
    Table[Length[Union[altprod/@facs[n]]],{n,100}]

A366738 Number of semi-sums of integer partitions of n.

Original entry on oeis.org

0, 0, 1, 2, 5, 9, 17, 28, 46, 72, 111, 166, 243, 352, 500, 704, 973, 1341, 1819, 2459, 3277, 4363, 5735, 7529, 9779, 12685, 16301, 20929, 26638, 33878, 42778, 53942, 67583, 84600, 105270, 130853, 161835, 199896, 245788, 301890, 369208, 451046, 549002, 667370
Offset: 0

Views

Author

Gus Wiseman, Nov 06 2023

Keywords

Comments

We define a semi-sum of a multiset to be any sum of a 2-element submultiset. This is different from sums of pairs of elements. For example, 2 is the sum of a pair of elements of {1}, but there are no semi-sums.

Examples

			The partitions of 6 and their a(6) = 17 semi-sums:
       (6) ->
      (51) -> 6
      (42) -> 6
     (411) -> 2,5
      (33) -> 6
     (321) -> 3,4,5
    (3111) -> 2,4
     (222) -> 4
    (2211) -> 2,3,4
   (21111) -> 2,3
  (111111) -> 2
		

Crossrefs

The non-binary version is A304792.
The strict non-binary version is A365925.
For prime indices instead of partitions we have A366739.
The strict case is A366741.
A000041 counts integer partitions, strict A000009.
A001358 lists semiprimes, squarefree A006881, conjugate A065119.
A126796 counts complete partitions, ranks A325781, strict A188431.
A276024 counts positive subset-sums of partitions, strict A284640.
A365924 counts incomplete partitions, ranks A365830, strict A365831.

Programs

  • Mathematica
    Table[Total[Length[Union[Total/@Subsets[#,{2}]]]&/@IntegerPartitions[n]],{n,0,15}]

Extensions

More terms from Alois P. Heinz, Nov 06 2023
Previous Showing 11-20 of 68 results. Next