A325796
Numbers with at least as many divisors as the sum of their prime indices.
Original entry on oeis.org
1, 2, 3, 4, 6, 8, 10, 12, 16, 18, 20, 24, 28, 30, 32, 36, 40, 42, 48, 54, 56, 60, 64, 66, 70, 72, 80, 84, 88, 90, 96, 100, 108, 112, 120, 126, 128, 132, 140, 144, 150, 156, 160, 162, 168, 176, 180, 192, 198, 200, 204, 208, 210, 216, 220, 224, 228, 234, 240
Offset: 1
The sequence of terms together with their prime indices begins:
1: {}
2: {1}
3: {2}
4: {1,1}
6: {1,2}
8: {1,1,1}
10: {1,3}
12: {1,1,2}
16: {1,1,1,1}
18: {1,2,2}
20: {1,1,3}
24: {1,1,1,2}
28: {1,1,4}
30: {1,2,3}
32: {1,1,1,1,1}
36: {1,1,2,2}
40: {1,1,1,3}
42: {1,2,4}
48: {1,1,1,1,2}
54: {1,2,2,2}
Positions of nonnegative terms in
A325794.
Heinz numbers of the partitions counted by
A325832.
-
Select[Range[100],DivisorSigma[0,#]>=Total[Cases[FactorInteger[#],{p_,k_}:>PrimePi[p]*k]]&]
A325797
Numbers with fewer divisors than the sum of their prime indices.
Original entry on oeis.org
5, 7, 9, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25, 26, 27, 29, 31, 33, 34, 35, 37, 38, 39, 41, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 61, 62, 63, 65, 67, 68, 69, 71, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89, 91, 92, 93, 94, 95, 97
Offset: 1
The sequence of terms together with their prime indices begins:
5: {3}
7: {4}
9: {2,2}
11: {5}
13: {6}
14: {1,4}
15: {2,3}
17: {7}
19: {8}
21: {2,4}
22: {1,5}
23: {9}
25: {3,3}
26: {1,6}
27: {2,2,2}
29: {10}
31: {11}
33: {2,5}
34: {1,7}
35: {3,4}
Positions of negative terms in
A325794.
Heinz numbers of the partitions counted by
A325833.
A326034
Number of knapsack partitions of n with largest part 3.
Original entry on oeis.org
0, 0, 0, 1, 1, 2, 1, 2, 2, 2, 2, 3, 1, 3, 2, 2, 2, 3, 1, 3, 2, 2, 2, 3, 1, 3, 2, 2, 2, 3, 1, 3, 2, 2, 2, 3, 1, 3, 2, 2, 2, 3, 1, 3, 2, 2, 2, 3, 1, 3, 2, 2, 2, 3, 1, 3, 2, 2, 2, 3, 1, 3, 2, 2, 2, 3, 1, 3, 2, 2, 2, 3, 1, 3, 2, 2, 2, 3, 1, 3, 2, 2, 2, 3, 1, 3, 2
Offset: 0
The initial values count the following partitions:
3: (3)
4: (3,1)
5: (3,2)
5: (3,1,1)
6: (3,3)
7: (3,3,1)
7: (3,2,2)
8: (3,3,2)
8: (3,3,1,1)
9: (3,3,3)
9: (3,2,2,2)
10: (3,3,3,1)
10: (3,3,2,2)
11: (3,3,3,2)
11: (3,3,3,1,1)
11: (3,2,2,2,2)
12: (3,3,3,3)
13: (3,3,3,3,1)
13: (3,3,3,2,2)
13: (3,2,2,2,2,2)
14: (3,3,3,3,2)
14: (3,3,3,3,1,1)
15: (3,3,3,3,3)
15: (3,2,2,2,2,2,2)
-
sums[ptn_]:=sums[ptn]=If[Length[ptn]==1,ptn,Union@@(Join[sums[#],sums[#]+Total[ptn]-Total[#]]&/@Union[Table[Delete[ptn,i],{i,Length[ptn]}]])];
kst[n_]:=Select[IntegerPartitions[n,All,{1,2,3}],Length[sums[Sort[#]]]==Times@@(Length/@Split[#]+1)-1&];
Table[Length[Select[kst[n],Max@@#==3&]],{n,0,30}]
A366753
Number of integer partitions of n without all different sums of two-element submultisets.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 3, 4, 9, 11, 22, 27, 48, 61, 98, 123, 188, 237, 345, 435, 611, 765, 1046, 1305, 1741, 2165, 2840, 3502, 4527, 5562, 7083, 8650, 10908, 13255, 16545, 20016, 24763, 29834, 36587, 43911, 53514, 63964, 77445, 92239, 111015, 131753
Offset: 0
The two-element submultisets of y = {1,1,1,2,2,3} are {1,1}, {1,2}, {1,3}, {2,2}, {2,3}, with sums 2, 3, 4, 4, 5, which are not all different, so y is counted under a(10).
The a(8) = 1 through a(13) = 11 partitions:
(3221) (32211) (4321) (33221) (4332) (43321)
(32221) (43211) (5331) (53221)
(322111) (322211) (5421) (53311)
(3221111) (43221) (54211)
(322221) (332221)
(332211) (432211)
(432111) (3222211)
(3222111) (3322111)
(32211111) (4321111)
(32221111)
(322111111)
These partitions have ranks
A366740.
A365661 counts strict partitions with a subset-sum k, complement
A365663.
-
Table[Length[Select[IntegerPartitions[n],!UnsameQ@@Total/@Union[Subsets[#,{2}]]&]],{n,0,30}]
A301829
Number of ways to choose a nonempty submultiset of a factorization of n into factors greater than one.
Original entry on oeis.org
0, 1, 1, 3, 1, 4, 1, 7, 3, 4, 1, 12, 1, 4, 4, 15, 1, 12, 1, 12, 4, 4, 1, 29, 3, 4, 7, 12, 1, 17, 1, 29, 4, 4, 4, 37, 1, 4, 4, 29, 1, 17, 1, 12, 12, 4, 1, 64, 3, 12, 4, 12, 1, 29, 4, 29, 4, 4, 1, 53, 1, 4, 12, 54, 4, 17, 1, 12, 4, 17, 1, 92, 1, 4, 12, 12, 4, 17
Offset: 1
The a(12) = 12 submultisets ("<" means subset or equal):
(2)<(2*2*3), (3)<(2*2*3), (2*2)<(2*2*3), (2*3)<(2*2*3), (2*2*3)<(2*2*3),
(2)<(2*6), (6)<(2*6), (2*6)<(2*6),
(3)<(3*4), (4)<(3*4), (3*4)<(3*4),
(12)<(12).
Cf.
A000712,
A001055,
A001222,
A001405,
A122768,
A276024,
A281113,
A284640,
A295632,
A299701,
A299702,
A299729,
A301830.
-
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
Table[Sum[Length[facs[d]]*Length[facs[n/d]],{d,Rest[Divisors[n]]}],{n,100}]
A320057
Heinz numbers of spanning sum-product knapsack partitions.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25, 26, 29, 31, 33, 34, 35, 37, 38, 39, 41, 43, 46, 47, 49, 50, 51, 53, 55, 57, 58, 59, 61, 62, 65, 67, 69, 71, 73, 74, 75, 77, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 98, 101, 103, 105
Offset: 1
The sequence of all spanning sum-product knapsack partitions begins: (), (1), (2), (1,1), (3), (2,1), (4), (1,1,1), (3,1), (5), (6), (4,1), (3,2), (7), (8), (4,2), (5,1), (9), (3,3), (6,1).
A complete list of sums of products of multiset partitions of the partition (5,4,3,2) is:
(2*3*4*5) = 120
(2)+(3*4*5) = 62
(3)+(2*4*5) = 43
(4)+(2*3*5) = 34
(5)+(2*3*4) = 29
(2*3)+(4*5) = 26
(2*4)+(3*5) = 23
(2*5)+(3*4) = 22
(2)+(3)+(4*5) = 25
(2)+(4)+(3*5) = 21
(2)+(5)+(3*4) = 19
(3)+(4)+(2*5) = 17
(3)+(5)+(2*4) = 16
(4)+(5)+(2*3) = 15
(2)+(3)+(4)+(5) = 14
These are all distinct, and the Heinz number of (5,4,3,2) is 1155, so 1155 belongs to the sequence.
Cf.
A001970,
A056239,
A066739,
A108917,
A112798,
A292886,
A299702,
A301899,
A318949,
A319318,
A319913.
-
multWt[n_]:=If[n==1,1,Times@@Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]^k]];
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
Select[Range[100],UnsameQ@@Table[Plus@@multWt/@f,{f,facs[#]}]&]
A320058
Heinz numbers of spanning product-sum knapsack partitions.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 15, 17, 19, 20, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 82, 83, 85, 86, 87
Offset: 1
The sequence of all spanning product-sum knapsack partitions begins: (), (1), (2), (1,1), (3), (2,1), (4), (1,1,1), (3,1), (5), (6), (4,1), (3,2), (7), (8), (3,1,1), (4,2), (5,1), (9), (3,3), (6,1), (4,1,1).
A complete list of products of sums of multiset partitions of the partition (3,1,1) is:
(1+1+3) = 5
(1)*(1+3) = 4
(3)*(1+1) = 6
(1)*(1)*(3) = 3
These are all distinct, and the Heinz number of (3,1,1) is 20, so 20 belongs to the sequence.
Cf.
A001970,
A056239,
A066739,
A108917,
A112798,
A292886,
A299702,
A301899,
A318949,
A319318,
A319913.
-
heinzWt[n_]:=If[n==1,0,Total[Cases[FactorInteger[n],{p_,k_}:>k*PrimePi[p]]]];
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
Select[Range[100],UnsameQ@@Table[Times@@heinzWt/@f,{f,facs[#]}]&]
A325863
Number of integer partitions of n such that every distinct non-singleton submultiset has a different sum.
Original entry on oeis.org
1, 1, 2, 3, 5, 6, 9, 11, 15, 17, 24, 29, 31, 41, 51, 58, 67, 84, 91, 117, 117
Offset: 0
The partition (2,1,1,1) has non-singleton submultisets {1,2} and {1,1,1} with the same sum, so (2,1,1,1) is not counted under a(5).
The a(1) = 1 through a(8) = 15 partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (21) (22) (32) (33) (43) (44)
(111) (31) (41) (42) (52) (53)
(211) (221) (51) (61) (62)
(1111) (311) (222) (322) (71)
(11111) (321) (331) (332)
(411) (421) (422)
(3111) (511) (431)
(111111) (2221) (521)
(4111) (611)
(1111111) (2222)
(3311)
(5111)
(41111)
(11111111)
The 10 non-knapsack partitions counted under a(12):
(7,6,1)
(7,5,2)
(7,4,3)
(7,5,1,1)
(7,4,2,1)
(7,3,3,1)
(7,3,2,2)
(7,4,1,1,1)
(7,2,2,2,1)
(7,1,1,1,1,1,1,1)
Cf.
A002033,
A055212,
A143823,
A196723,
A276024,
A299702,
A325856,
A325862,
A325864,
A325865,
A325866,
A325867,
A325877.
-
Table[Length[Select[IntegerPartitions[n],UnsameQ@@Plus@@@Union[Subsets[#,{2,Length[#]}]]&]],{n,0,15}]
A353743
Least number with run-sum trajectory of length k; a(0) = 1.
Original entry on oeis.org
1, 2, 4, 12, 84, 1596, 84588, 11081028, 3446199708, 2477817590052, 4011586678294188, 14726534696017964148, 120183249654202605411828, 2146833388573021140471483564, 83453854313999050793547980583372, 7011542477899258250521520684673165324
Offset: 0
The terms together with their prime indices begin:
1: {}
2: {1}
4: {1,1}
12: {1,1,2}
84: {1,1,2,4}
1596: {1,1,2,4,8}
84588: {1,1,2,4,8,16}
The run-sum trajectory is the iteration of
A353832.
The first length-k row of
A353840 has index a(k).
A353838 ranks partitions with all distinct run-sums, counted by
A353837.
Cf.
A002033,
A005117,
A006939,
A071625,
A076954,
A126796,
A181819,
A182857,
A188431,
A299702,
A325780,
A325781,
A353834.
-
Join[{1,2},Table[2*Product[Prime[2^k],{k,0,n}],{n,0,6}]]
A354580
Number of rucksack compositions of n: every distinct partial run has a different sum.
Original entry on oeis.org
1, 1, 2, 4, 6, 12, 22, 39, 68, 125, 227, 402, 710, 1280, 2281, 4040, 7196, 12780, 22623, 40136, 71121, 125863, 222616, 393305, 695059, 1227990, 2167059, 3823029, 6743268, 11889431, 20955548, 36920415, 65030404, 114519168, 201612634, 354849227
Offset: 0
The a(0) = 1 through a(5) = 12 compositions:
() (1) (2) (3) (4) (5)
(1,1) (1,2) (1,3) (1,4)
(2,1) (2,2) (2,3)
(1,1,1) (3,1) (3,2)
(1,2,1) (4,1)
(1,1,1,1) (1,1,3)
(1,2,2)
(1,3,1)
(2,1,2)
(2,2,1)
(3,1,1)
(1,1,1,1,1)
These compositions are ranked by
A354581.
A353836 counts partitions by number of distinct run-sums.
A353847 is the composition run-sum transformation.
A353851 counts compositions with all equal run-sums, ranked by
A353848.
Cf.
A143823,
A169942,
A242882,
A325545,
A325680,
A325682,
A325685,
A325687,
A329739,
A351017,
A353849.
-
Table[Length[Select[Join@@Permutations/@ IntegerPartitions[n],UnsameQ@@Total/@Union@@Subsets/@Split[#]&]],{n,0,15}]
Comments