cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A323297 Number of 3-uniform hypergraphs on n labeled vertices where no two edges have exactly one vertex in common.

Original entry on oeis.org

1, 1, 1, 2, 16, 76, 271, 1212, 10158, 78290, 503231, 3495966, 33016534, 327625520, 3000119669, 28185006956, 308636238516, 3631959615948, 42031903439809, 493129893459310, 6264992355842706, 84639308481270656, 1159506969481515271, 16131054826385628592
Offset: 0

Views

Author

Gus Wiseman, Jan 11 2019

Keywords

Examples

			The a(4) = 16 hypergraphs:
  {}
  {{1,2,3}}
  {{1,2,4}}
  {{1,3,4}}
  {{2,3,4}}
  {{1,2,3},{1,2,4}}
  {{1,2,3},{1,3,4}}
  {{1,2,3},{2,3,4}}
  {{1,2,4},{1,3,4}}
  {{1,2,4},{2,3,4}}
  {{1,3,4},{2,3,4}}
  {{1,2,3},{1,2,4},{1,3,4}}
  {{1,2,3},{1,2,4},{2,3,4}}
  {{1,2,3},{1,3,4},{2,3,4}}
  {{1,2,4},{1,3,4},{2,3,4}}
  {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
The following are non-isomorphic representatives of the 8 unlabeled 3-uniform hypergraphs on 6 vertices with no two edges having exactly one vertex in common, and their multiplicities in the labeled case, which add up to a(6) = 271:
   1 X {}
  20 X {{1,2,3}}
  90 X {{1,3,4},{2,3,4}}
  10 X {{1,2,3},{4,5,6}}
  60 X {{1,4,5},{2,4,5},{3,4,5}}
  60 X {{1,2,4},{1,3,4},{2,3,4}}
  15 X {{1,5,6},{2,5,6},{3,5,6},{4,5,6}}
  15 X {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
		

Crossrefs

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]];
    Table[Length[stableSets[Subsets[Range[n],{3}],Length[Intersection[#1,#2]]==1&]],{n,8}]
  • PARI
    seq(n)={Vec(serlaplace(exp(x - x^2/2 - x^3/3 + 5*x^4/24 + x^2*exp(x + O(x^(n-1)))/2)))} \\ Andrew Howroyd, Aug 18 2019

Formula

Binomial transform of A323296.
E.g.f.: exp(x - x^2/2 - x^3/3 + 5*x^4/24 + x^2*exp(x)/2). - Andrew Howroyd, Aug 18 2019

Extensions

a(10)-a(11) from Alois P. Heinz, Aug 11 2019
Terms a(12) and beyond from Andrew Howroyd, Aug 18 2019

A323298 Number of 3-uniform hypergraphs spanning n labeled vertices where every two edges have exactly one vertex in common.

Original entry on oeis.org

1, 0, 0, 1, 0, 15, 150, 1815, 0, 945, 0, 10395, 0, 135135, 0, 2027025, 0, 34459425, 0, 654729075, 0, 13749310575, 0, 316234143225, 0, 7905853580625, 0, 213458046676875, 0, 6190283353629375, 0, 191898783962510625, 0, 6332659870762850625, 0, 221643095476699771875
Offset: 0

Views

Author

Gus Wiseman, Jan 11 2019

Keywords

Comments

The only way to cover more than 7 vertices is with edges all having a single common vertex. For the special cases of n = 6 or n = 7, there are also covers without a common vertex. - Andrew Howroyd, Aug 15 2019

Examples

			The a(5) = 15 hypergraphs:
  {{1,4,5},{2,3,5}}
  {{1,4,5},{2,3,4}}
  {{1,3,5},{2,4,5}}
  {{1,3,5},{2,3,4}}
  {{1,3,4},{2,4,5}}
  {{1,3,4},{2,3,5}}
  {{1,2,5},{3,4,5}}
  {{1,2,5},{2,3,4}}
  {{1,2,5},{1,3,4}}
  {{1,2,4},{3,4,5}}
  {{1,2,4},{2,3,5}}
  {{1,2,4},{1,3,5}}
  {{1,2,3},{3,4,5}}
  {{1,2,3},{2,4,5}}
  {{1,2,3},{1,4,5}}
The following are non-isomorphic representatives of the 5 unlabeled 3-uniform hypergraphs spanning 7 vertices in which every two edges have exactly one vertex in common, and their multiplicities in the labeled case, which add up to a(7) = 1815.
  105 X {{1,2,7},{3,4,7},{5,6,7}}
  840 X {{1,4,5},{2,4,6},{3,4,7},{5,6,7}}
  630 X {{1,4,5},{2,3,5},{2,4,6},{3,4,7},{5,6,7}}
  210 X {{1,3,6},{1,4,5},{2,3,5},{2,4,6},{3,4,7},{5,6,7}}
   30 X {{1,2,7},{1,3,6},{1,4,5},{2,3,5},{2,4,6},{3,4,7},{5,6,7}}
From _Andrew Howroyd_, Aug 15 2019: (Start)
The following are non-isomorphic representatives of the 2 unlabeled 3-uniform hypergraphs spanning 6 vertices in which every two edges have exactly one vertex in common, and their multiplicities in the labeled case, which add up to a(6) = 150.
    120 X {{1,2,3},{1,4,5},{3,5,6}}
     30 X {{1,2,3},{1,4,5},{3,5,6},{2,4,6}}
(End)
		

Crossrefs

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]];
    Table[Length[Select[stableSets[Subsets[Range[n],{3}],Length[Intersection[#1,#2]]!=1&],Union@@#==Range[n]&]],{n,10}]
  • PARI
    a(n)={if(n%2, if(n<=3, n==3, if(n==7, 1815, n!/(2^(n\2)*(n\2)!))), if(n==6, 150, n==0))} \\ Andrew Howroyd, Aug 15 2019

Formula

a(2*n) = 0 for n > 3; a(2*n-1) = A001147(n) for n > 4. - Andrew Howroyd, Aug 15 2019

Extensions

Terms a(13) and beyond from Andrew Howroyd, Aug 15 2019

A302396 Number of families of 4-subsets of an n-set that cover every element.

Original entry on oeis.org

1, 0, 0, 0, 1, 26, 32596, 34359509614, 1180591620442534312297, 85070591730234605240519066638188154620, 1645504557321206042154968331851433202636630333819989444275003856
Offset: 0

Views

Author

Brendan McKay, Apr 07 2018

Keywords

Comments

Number of simple 4-uniform hypergraphs of order n without isolated vertices.

Examples

			For n=5 all families with at least two 4-sets will cover every element.
		

Crossrefs

Column 4 of A299471.
Cf. A302394.

Programs

  • GAP
    Flat(List([0..10],n->Sum([0..n],k->(-1)^k*Binomial(n,k)*2^Binomial(n-k,4)))); # Muniru A Asiru, Apr 07 2018
  • Maple
    seq(add((-1)^k * binomial(n,k) * 2^binomial(n-k,4), k = 0..n), n=0..12)
  • Mathematica
    Array[Sum[(-1)^k*Binomial[#, k] 2^Binomial[# - k, 4], {k, 0, #}] &, 11, 0] (* Michael De Vlieger, Apr 07 2018 *)
  • PARI
    a(n) = sum(k=0, n, (-1)^k*binomial(n,k)*2^binomial(n-k,4)); \\ Michel Marcus, Apr 07 2018
    

Formula

a(n) = Sum_{k=0..n} (-1)^k * binomial(n,k) * 2^binomial(n-k,4).

A003190 Number of connected 2-plexes.

Original entry on oeis.org

1, 0, 1, 3, 29, 2101, 7011181, 1788775603301, 53304526022885278403, 366299663378889804782330207902, 1171638318502622784366970315262493034215728, 3517726593606524901243694560022510194169866584119717555335
Offset: 1

Views

Author

Keywords

Comments

The Palmer reference (incorrectly) has a(7)=7011349, a(8)=1788775603133, a(9)=53304526022885278659. - Sean A. Irvine, Mar 05 2015
Also connected 3-uniform hypergraphs on n vertices. - Gus Wiseman, Feb 23 2019

Examples

			From _Gus Wiseman_, Feb 23 2019: (Start)
Non-isomorphic representatives of the a(5) = 29 2-plexes:
  {{125}{345}}
  {{123}{245}{345}}
  {{135}{245}{345}}
  {{145}{245}{345}}
  {{123}{145}{245}{345}}
  {{124}{135}{245}{345}}
  {{125}{135}{245}{345}}
  {{134}{235}{245}{345}}
  {{145}{235}{245}{345}}
  {{123}{124}{135}{245}{345}}
  {{123}{145}{235}{245}{345}}
  {{124}{134}{235}{245}{345}}
  {{134}{145}{235}{245}{345}}
  {{135}{145}{235}{245}{345}}
  {{145}{234}{235}{245}{345}}
  {{123}{124}{134}{235}{245}{345}}
  {{123}{134}{145}{235}{245}{345}}
  {{123}{145}{234}{235}{245}{345}}
  {{124}{135}{145}{235}{245}{345}}
  {{125}{135}{145}{235}{245}{345}}
  {{135}{145}{234}{235}{245}{345}}
  {{123}{124}{135}{145}{235}{245}{345}}
  {{124}{135}{145}{234}{235}{245}{345}}
  {{125}{135}{145}{234}{235}{245}{345}}
  {{134}{135}{145}{234}{235}{245}{345}}
  {{123}{124}{135}{145}{234}{235}{245}{345}}
  {{125}{134}{135}{145}{234}{235}{245}{345}}
  {{124}{125}{134}{135}{145}{234}{235}{245}{345}}
  {{123}{124}{125}{134}{135}{145}{234}{235}{245}{345}}
(End)
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=3 of A301924.
Cf. A000665 (unlabeled 3-uniform), A025035, A125791 (labeled 3-uniform), A289837, A301922, A302374 (labeled 3-uniform spanning), A302394, A306017, A319540, A320395, A322451 (unlabeled 3-uniform spanning), A323292-A323299.

Formula

Inverse Euler transform of A000665. - Sean A. Irvine, Mar 05 2015

Extensions

a(7)-a(9) corrected and extended by Sean A. Irvine, Mar 05 2015

A320606 Regular triangle read by rows where T(n,k) is the number of k-uniform hypergraphs spanning n labeled vertices where every two vertices appear together in some edge, n >= 0, 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 5, 1, 0, 0, 1, 388, 16, 1, 0, 0, 1, 477965, 27626, 42, 1
Offset: 1

Views

Author

Gus Wiseman, Jan 10 2019

Keywords

Examples

			Triangle begins:
      1
      0      1
      0      0      1
      0      0      1      1
      0      0      1      5      1
      0      0      1    388     16      1
      0      0      1 477965  27626     42      1
		

Crossrefs

Row sums are A321134. Column k = 3 is A302394 without the initial terms.

Programs

  • Mathematica
    Table[Length[Select[Subsets[If[k==0,{},Subsets[Range[n],{k}]]],And[Union@@#==Range[n],Length[Union@@(Subsets[#,{2}]&/@#)]==Binomial[n,2]]&]],{n,0,6},{k,0,n}]

A321134 Number of uniform hypergraphs spanning n vertices where every two vertices appear together in some edge.

Original entry on oeis.org

1, 1, 1, 2, 7, 406, 505635
Offset: 0

Views

Author

Gus Wiseman, Jan 10 2019

Keywords

Comments

A hypergraph is uniform if all edges have the same size.

Examples

			The a(4) = 7 hypergraphs:
  {{1,2,3,4}}
  {{1,2,3},{1,2,4},{1,3,4}}
  {{1,2,3},{1,2,4},{2,3,4}}
  {{1,2,3},{1,3,4},{2,3,4}}
  {{1,2,4},{1,3,4},{2,3,4}}
  {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
  {{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}}
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Length[Select[Subsets[Subsets[Range[n],{k}]],And[Union@@#==Range[n],Length[Union@@(Subsets[#,{2}]&/@#)]==Binomial[n,2]]&]],{k,1,n}],{n,1,6}]

A320446 Covers of triangles by tetrahedra: number of labeled 4-uniform hypergraphs spanning n vertices such that every three vertices appear together in some edge.

Original entry on oeis.org

1, 1, 1, 0, 1, 6, 5789
Offset: 0

Views

Author

Gus Wiseman, Jan 10 2019

Keywords

Examples

			The a(5) = 6 hypergraphs:
  {{1234},{1235},{1245},{1345}}
  {{1234},{1235},{1245},{2345}}
  {{1234},{1235},{1345},{2345}}
  {{1234},{1245},{1345},{2345}}
  {{1235},{1245},{1345},{2345}}
  {{1234},{1235},{1245},{1345},{2345}}
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{4}]],Length[Union@@(Subsets[#,{3}]&/@#)]==Binomial[n,3]&]],{n,6}]
Previous Showing 11-17 of 17 results.