cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A302863 a(n) = [x^(n^2)] (1 + theta_3(x))^n/(2^n*(1 - x)), where theta_3() is the Jacobi theta function.

Original entry on oeis.org

1, 2, 6, 29, 165, 1203, 9763, 83877, 793049, 7903501, 83570177, 933697153, 10905583809, 133352809334, 1695473999478, 22354920990148, 305096197935075, 4296142551821184, 62336908825014452, 930284705538262688, 14255992611680074754, 224065160215526683317, 3607018540134004189466
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 14 2018

Keywords

Comments

a(n) = number of nonnegative solutions to (x_1)^2 + (x_2)^2 + ... + (x_n)^2 <= n^2.

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[(1 + EllipticTheta[3, 0, x])^n/(2^n (1 - x)), {x, 0, n^2}], {n, 0, 22}]
    Table[SeriesCoefficient[1/(1 - x) Sum[x^k^2, {k, 0, n}]^n, {x, 0, n^2}], {n, 0, 22}]

A055417 Number of points in N^n of norm <= 2.

Original entry on oeis.org

1, 3, 6, 11, 20, 36, 63, 106, 171, 265, 396, 573, 806, 1106, 1485, 1956, 2533, 3231, 4066, 5055, 6216, 7568, 9131, 10926, 12975, 15301, 17928, 20881, 24186, 27870, 31961, 36488, 41481, 46971, 52990, 59571, 66748, 74556, 83031, 92210, 102131, 112833, 124356
Offset: 0

Views

Author

Keywords

Comments

Binomial transform of [1, 0, 2, -1, 2, -1, 1, -1, 1, -1, 1, ...]. - Gary W. Adamson, Mar 12 2009

Examples

			{(0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 1, 0), (0, 1, 1), (0, 2, 0), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1), (2, 0, 0)} are all the points in N^3 of norm <= 2 so a(3)=11.
		

Crossrefs

Row n=2 of A302998.

Programs

  • Mathematica
    CoefficientList[Series[(-z^3 - z^2 + 2*z - 1)/(z - 1)^5, {z, 0, 100}], z] (* and *) Table[(n^4 - 6*n^3 + 23 n^2 + 6*n)/24, {n, 1, 100}] (* Vladimir Joseph Stephan Orlovsky, Jul 17 2011 *)
    LinearRecurrence[{5,-10,10,-5,1},{1,3,6,11,20},50] (* Harvey P. Dale, Aug 30 2025 *)
  • PARI
    a(n)=(n^3-3*n^2+14*n+24)*(n+1)/24

Formula

a(n) = (n^3 - 3*n^2 + 14*n + 24)*(n+1)/24. Proof: The coordinates of such a point are a permutation of one of the vectors (0, ..., 0), (0, ..., 0, 1), (0, ..., 0, 2), (0, ..., 0, 1, 1), (0, ..., 0, 1, 1, 1), or (0, ..., 0, 1, 1, 1, 1), so the number of points is 1 + n + n + binomial(n,2) + binomial(n,3) + binomial(n,4). - Formula conjectured by Frank Ellermann, Mar 16 2002 and explained by Michael Somos, Apr 25 2003
G.f.: (1-2*x+x^2+x^3)/(1-x)^5. - Michael Somos, Apr 25 2003

A055418 Number of points in N^n of norm <= 3.

Original entry on oeis.org

1, 4, 11, 29, 70, 157, 337, 702, 1420, 2780, 5258, 9615, 17043, 29381, 49430, 81404, 131563, 209084, 327237, 504945, 768820, 1155781, 1716375, 2518938, 3654750, 5244356, 7445244, 10461091, 14552809, 20051645, 27374612, 37042552, 49701157
Offset: 0

Views

Author

Keywords

Examples

			There are exactly 19 coordinate configurations (up to permutation) with up to 9 nonzero positive coordinates that can produce a vector of norm <= 3:
{..., 0, 0, 0, 0, 0, 0, 0, 0, 0}   0
{..., 0, 0, 0, 0, 0, 0, 0, 0, 1}   1
{..., 0, 0, 0, 0, 0, 0, 0, 0, 2}   2
{..., 0, 0, 0, 0, 0, 0, 0, 0, 3}   3
{..., 0, 0, 0, 0, 0, 0, 0, 1, 1}   sqrt(2)
{..., 0, 0, 0, 0, 0, 0, 0, 1, 2}   sqrt(5)
{..., 0, 0, 0, 0, 0, 0, 0, 2, 2}   2 sqrt(2)
{..., 0, 0, 0, 0, 0, 0, 1, 1, 1}   sqrt(3)
{..., 0, 0, 0, 0, 0, 0, 1, 1, 2}   sqrt(2) sqrt(3)
{..., 0, 0, 0, 0, 0, 0, 1, 2, 2}   3
{..., 0, 0, 0, 0, 0, 1, 1, 1, 1}   2
{..., 0, 0, 0, 0, 0, 1, 1, 1, 2}   sqrt(7)
{..., 0, 0, 0, 0, 1, 1, 1, 1, 1}   sqrt(5)
{..., 0, 0, 0, 0, 1, 1, 1, 1, 2}   2 sqrt(2)
{..., 0, 0, 0, 1, 1, 1, 1, 1, 1}   sqrt(6)
{..., 0, 0, 0, 1, 1, 1, 1, 1, 2}   3
{..., 0, 0, 1, 1, 1, 1, 1, 1, 1}   sqrt(7)
{..., 0, 1, 1, 1, 1, 1, 1, 1, 1}   2 sqrt(2)
{..., 1, 1, 1, 1, 1, 1, 1, 1, 1}   3
To produce the formula for a(n), it is sufficient to sum the number of permutations of these configurations in a vector of arbitrary length n.
This gives in the same order:
a(n) = 1 + n + n + n + binomial(n, 2) + n*(n - 1) + binomial(n, 2) + binomial(n, 3) + n*binomial(n-1, 2) + n*binomial(n-1, 2) + binomial(n, 4) + n*binomial(n-1, 3) + binomial(n, 5) + n*binomial(n-1, 4) + binomial(n, 6) + n*binomial(n-1, 5) + binomial(n, 7) + binomial(n, 8) + binomial(n, 9).
This is a polynomial of degree 9 in n.
a(n) = (1 + n) (9! + n (452016 + n (-224244 + n (152108 + n (-17351 + n (-16 + n (394 + (-28 + n) n)))))))/(9!).
		

Crossrefs

Row n=3 of A302998.
Cf. A055417 (case for norm <= 2).

Formula

Satisfies a degree nine polynomial (see Example section). - Olivier Gérard, Mar 30 2015
G.f.: -(8*x^8-35*x^7+51*x^6-30*x^5-5*x^4+21*x^3-16*x^2+6*x-1) / (x-1)^10. - Colin Barker, Jul 07 2013

A055419 Number of points in N^n of norm <= 4.

Original entry on oeis.org

1, 5, 17, 54, 165, 482, 1319, 3390, 8262, 19250, 43154, 93601, 197381, 406200, 817954, 1614348, 3126068, 5943728, 11103912, 20396957, 36869790, 65637607, 115178814, 199377387, 340708159, 575150851, 959691775, 1583660542
Offset: 0

Views

Author

Keywords

Crossrefs

Row n=4 of A302998.

Formula

Empirical g.f.: (11*x^16 -164*x^15 +936*x^14 -2841*x^13 +5310*x^12 -6697*x^11 +6044*x^10 -3984*x^9 +1734*x^8 -75*x^7 -741*x^6 +827*x^5 -539*x^4 +235*x^3 -68*x^2 +12*x -1) / (x -1)^17. - Colin Barker, Jul 07 2013

A055420 Number of points in N^n of norm <= 5.

Original entry on oeis.org

1, 6, 26, 99, 357, 1203, 3819, 11496, 33044, 91067, 241283, 616618, 1525908, 3670422, 8609234, 19739642, 44323092, 97594520, 210952363, 448015366, 935625977, 1922870258, 3891946458, 7763818914, 15275110988, 29660831057
Offset: 0

Views

Author

Keywords

Crossrefs

Row n=5 of A302998.

A055421 Number of points in N^n of norm <= 6.

Original entry on oeis.org

1, 7, 35, 163, 688, 2673, 9763, 33792, 111155, 349122, 1053323, 3070003, 8681103, 23885604, 64075075, 167836570, 429817326, 1077457554, 2646942189, 6379963205, 15104418023, 35160248084, 80550746390, 181768697529
Offset: 0

Views

Author

Keywords

Crossrefs

Row n=6 of A302998.

A055422 Number of points in N^n of norm <= 7.

Original entry on oeis.org

1, 8, 45, 239, 1154, 5139, 21374, 83877, 312913, 1115334, 3813001, 12556041, 39993741, 123663399, 372232239, 1093036739, 3136328324, 8805588398, 24218635622, 65321490327, 172947226965, 449923333530, 1151130040924
Offset: 0

Views

Author

Keywords

Crossrefs

Row n=7 of A302998.

A055423 Number of points in N^n of norm <= 8.

Original entry on oeis.org

1, 9, 58, 344, 1867, 9389, 43774, 191433, 793049, 3134307, 11887373, 43482354, 154000286, 529571812, 1771709727, 5775999764, 18376959165, 57141981155, 173888869424, 518545311255, 1517106917098, 4359360903570, 12314479965763
Offset: 0

Views

Author

Keywords

Crossrefs

Row n=8 of A302998.

A055424 Number of points in N^n of norm <= 9.

Original entry on oeis.org

1, 10, 73, 486, 2907, 15930, 81586, 394251, 1807754, 7903501, 33107532, 133503791, 520255432, 1965535471, 7218099342, 25820149509, 90120974981, 307356231936, 1025551245320, 3351842646799, 10742435671415
Offset: 0

Views

Author

Keywords

Crossrefs

Row n=9 of A302998.

A055425 Number of points in N^n of norm <= 10.

Original entry on oeis.org

1, 11, 90, 648, 4272, 25810, 145138, 766518, 3834490, 18286018, 83570177, 367774928, 1564548863, 6452004367, 25847879345, 100777951798, 383035877989, 1421435174008, 5157779243758, 18324309623403, 63818201253153
Offset: 0

Views

Author

Keywords

Crossrefs

Row n=10 of A302998.
Previous Showing 11-20 of 21 results. Next