cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A054423 Number of unlabeled 3-gonal cacti having n triangles.

Original entry on oeis.org

1, 1, 1, 2, 7, 19, 86, 372, 1825, 9143, 47801, 254990, 1391302, 7713642, 43401974, 247216934, 1423531255, 8275108733, 48511773461, 286542497274, 1704002332513, 10195435737315, 61341136938138, 370933387552634, 2253475545208390, 13748639775492766, 84211761819147696
Offset: 0

Views

Author

Simon Plouffe, Mar 15 2000

Keywords

Comments

Also, the number of noncrossing partitions up to rotation composed of n blocks of size 3. - Andrew Howroyd, May 04 2018

Crossrefs

Column k=3 of A303694.

Programs

  • Maple
    with(combinat): with(numtheory): m := 3: for p from 1 to 40 do s1 := 0: s2 := 0:
    for d from 1 to p do if p mod d = 0 then s1 := s1+phi(p/d)*binomial(m*d,d) fi: od:
    for d from 1 to p-1 do if gcd(m, p-1) mod d = 0 then s2 := s2+phi(d)*binomial((p*m)/d, (p-1)/d) fi: od:
    printf(`%d,`, (s1+s2)/(m*p)-binomial(m*p,p)/(p*(m-1)+1)) od: # James Sellers, Mar 17 2000
  • Mathematica
    a[0] = 1;
    a[n_] := (DivisorSum[n, EulerPhi[n/#] Binomial[3 #, #]&] + DivisorSum[GCD[n - 1, 3], EulerPhi[#] Binomial[3n/#, (n-1)/#]&])/(3n) - Binomial[3n, n]/ (2n + 1);
    Table[a[n], {n, 0, 26}] (* Jean-François Alcover, Jul 02 2018, after Andrew Howroyd *)
  • PARI
    a(n) = {if(n==0, 1, (sumdiv(n, d, eulerphi(n/d)*binomial(3*d, d)) + sumdiv(gcd(n-1, 3), d, eulerphi(d)*binomial(3*n/d, (n-1)/d)))/(3*n) - binomial(3*n, n)/(2*n+1))} \\ Andrew Howroyd, May 04 2018

Formula

a(n) = ((Sum_{d|n} phi(n/d)*binomial(3*d, d)) + (Sum_{d|gcd(n-1, 3)} phi(d)*binomial(3*n/d, (n-1)/d)))/(3*n) - binomial(3*n, n)/(2*n+1) for n > 0. - Andrew Howroyd, May 04 2018
a(n) ~ 3^(3*n - 1/2) / (sqrt(Pi) * n^(5/2) * 2^(2*n + 2)). - Vaclav Kotesovec, Jun 01 2022

Extensions

More terms from James Sellers, Mar 17 2000
Terms a(24) and beyond from Andrew Howroyd, May 04 2018

A054368 Number of unlabeled 6-gonal cacti having n polygons.

Original entry on oeis.org

1, 1, 1, 4, 25, 187, 1772, 17880, 191967, 2141232, 24640989, 290610414, 3498042924, 42831369777, 532148952720, 6695274478834, 85166167050949, 1093843440166718, 14169564589464986, 184957445502335682, 2430876839834279341, 32147041999684759275, 427520786795342624432
Offset: 0

Views

Author

Keywords

Comments

Also, the number of noncrossing partitions up to rotation composed of n blocks of size 6. - Andrew Howroyd, May 04 2018

Crossrefs

Column k=6 of A303694.

Programs

  • Maple
    with(combinat): with(numtheory): m := 6: for p from 2 to 28 do s1 := 0: s2 := 0: for d from 1 to p do if p mod d = 0 then s1 := s1+phi(p/d)*binomial(m*d, d) fi: od: for d from 1 to p-1 do if gcd(m, p-1) mod d = 0 then s2 := s2+phi(d)*binomial((p*m)/d, (p-1)/d) fi: od: printf(`%d, `, (s1+s2)/(m*p)-binomial(m*p, p)/(p*(m-1)+1)) od: # Zerinvary Lajos, Dec 01 2006
  • Mathematica
    a[0] = 1;
    a[n_] := (DivisorSum[n, EulerPhi[n/#] Binomial[6#, #]&] + DivisorSum[GCD[n - 1, 6], EulerPhi[#] Binomial[6n/#, (n-1)/#]&])/(6n) - Binomial[6n, n]/(5 n + 1);
    Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Jul 01 2018, after Andrew Howroyd *)
  • PARI
    a(n) = {if(n==0, 1, (sumdiv(n, d, eulerphi(n/d)*binomial(6*d, d)) + sumdiv(gcd(n-1, 6), d, eulerphi(d)*binomial(6*n/d, (n-1)/d)))/(6*n) - binomial(6*n, n)/(5*n+1))} \\ Andrew Howroyd, May 04 2018

Formula

a(n) = ((Sum_{d|n} phi(n/d)*binomial(6*d, d)) + (Sum_{d|gcd(n-1, 6)} phi(d)*binomial(6*n/d, (n-1)/d)))/(6*n) - binomial(6*n, n)/(5*n+1) for n > 0. - Andrew Howroyd, May 04 2018

Extensions

More terms from Zerinvary Lajos, Dec 01 2006
Terms a(21) and beyond from Andrew Howroyd, May 04 2018

A054371 Number of unlabeled 7-gonal cacti having n polygons.

Original entry on oeis.org

1, 1, 1, 4, 33, 300, 3412, 40770, 518043, 6830545, 92909684, 1295151600, 18426823044, 266696759064, 3916798516462, 58253090490630, 875948658280305, 13299481192954961, 203661940884670135, 3142707632566279222, 48829032430870168660, 763383551090733489744
Offset: 0

Views

Author

Keywords

Comments

Also, the number of noncrossing partitions up to rotation composed of n blocks of size 7.

Crossrefs

Column k=7 of A303694.

Programs

  • Maple
    with(combinat): with(numtheory): m := 7: for p from 2 to 27 do s1 := 0: s2 := 0: for d from 1 to p do if p mod d = 0 then s1 := s1+phi(p/d)*binomial(m*d, d) fi: od: for d from 1 to p-1 do if gcd(m, p-1) mod d = 0 then s2 := s2+phi(d)*binomial((p*m)/d, (p-1)/d) fi: od: printf(`%d, `, (s1+s2)/(m*p)-binomial(m*p, p)/(p*(m-1)+1)) od: # Zerinvary Lajos, Dec 01 2006
  • Mathematica
    a[0] = 1;
    a[n_] := (DivisorSum[n, EulerPhi[n/#] Binomial[7#, #]&] + DivisorSum[GCD[n - 1, 7], EulerPhi[#] Binomial[7n/#, (n-1)/#]&])/(7n) - Binomial[7n, n]/(6 n + 1);
    Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Jul 01 2018, after Andrew Howroyd *)
  • PARI
    a(n) = {if(n==0, 1, (sumdiv(n, d, eulerphi(n/d)*binomial(7*d, d)) + sumdiv(gcd(n-1, 7), d, eulerphi(d)*binomial(7*n/d, (n-1)/d)))/(7*n) - binomial(7*n, n)/(6*n+1))} \\ Andrew Howroyd, May 04 2018

Formula

a(n) = ((Sum_{d|n} phi(n/d)*binomial(7*d, d)) + (Sum_{d|gcd(n-1, 7)} phi(d)*binomial(7*n/d, (n-1)/d)))/(7*n) - binomial(7*n, n)/(6*n+1) for n > 0. - Andrew Howroyd, May 04 2018

Extensions

More terms from Zerinvary Lajos, Dec 01 2006
Terms a(20) and beyond from Andrew Howroyd, May 04 2018

A332648 Array read by antidiagonals: T(n,k) is the number of rooted unlabeled k-gonal cacti having n polygons.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 4, 1, 1, 1, 3, 5, 9, 1, 1, 1, 3, 11, 13, 20, 1, 1, 1, 4, 13, 46, 37, 48, 1, 1, 1, 4, 22, 62, 208, 111, 115, 1, 1, 1, 5, 25, 140, 333, 1002, 345, 286, 1, 1, 1, 5, 37, 176, 985, 1894, 5012, 1105, 719, 1, 1, 1, 6, 41, 319, 1397, 7374, 11258, 25863, 3624, 1842, 1
Offset: 0

Views

Author

Andrew Howroyd, Feb 18 2020

Keywords

Comments

The number of nodes will be n*(k-1) + 1.

Examples

			Array begins:
======================================================
n\k | 1   2    3     4     5      6      7       8
----+-------------------------------------------------
  0 | 1   1    1     1     1      1      1       1 ...
  1 | 1   1    1     1     1      1      1       1 ...
  2 | 1   2    2     3     3      4      4       5 ...
  3 | 1   4    5    11    13     22     25      37 ...
  4 | 1   9   13    46    62    140    176     319 ...
  5 | 1  20   37   208   333    985   1397    3059 ...
  6 | 1  48  111  1002  1894   7374  11757   31195 ...
  7 | 1 115  345  5012 11258  57577 103376  331991 ...
  8 | 1 286 1105 25863 68990 463670 937179 3643790 ...
  ...
		

Crossrefs

Columns k=1..4 are A000012, A000081(n+1), A003080, A287891.

Programs

  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    R(n,k)={my(v=[]); for(n=1, n, my(g=1+x*Ser(v)); v=EulerT(Vec((g^k + g^(k%2)*subst(g^(k\2), x, x^2))/2))); concat([1], v)}
    T(n)={Mat(concat([vectorv(n+1,i,1)], vector(n,k,Col(R(n,k)))))}
    { my(A=T(8)); for(n=1, #A, print(A[n,])) }
Previous Showing 11-14 of 14 results.