cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-36 of 36 results.

A370765 a(n) = 9^n * [x^n] Product_{k>=1} ((1 + 2^(k+1)*x^k) * (1 + 2^(k-1)*x^k))^(1/3).

Original entry on oeis.org

1, 15, 153, 11295, 31968, 5289300, 41957514, 3216919050, -21009764691, 2153132775315, -16978376482767, 1659596014366335, -35929151338082922, 1473739361689662990, -38968782475183427016, 1541715187631618436300, -46858796372722560413526, 1615119529247884664988030
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 01 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 25; CoefficientList[Series[Product[(1+2^(k+1)*x^k)*(1+2^(k-1)*x^k), {k, 1, nmax}]^(1/3), {x, 0, nmax}], x] * 9^Range[0, nmax]
    nmax = 25; CoefficientList[Series[Product[(1+2^(k+1)*(9*x)^k)*(1+2^(k-1)*(9*x)^k), {k, 1, nmax}]^(1/3), {x, 0, nmax}], x]
    nmax = 25; CoefficientList[Series[(2*QPochhammer[-2, 2*x]*QPochhammer[-1/2, 2*x]/9)^(1/3), {x, 0, nmax}], x] * 9^Range[0, nmax]
    nmax = 25; CoefficientList[Series[(2*QPochhammer[-2, x]*QPochhammer[-1/2, x]/9)^(1/3), {x, 0, nmax}], x] * 18^Range[0, nmax]

Formula

G.f.: Product_{k>=1} ((1 + 2^(k+1)*(9*x)^k) * (1 + 2^(k-1)*(9*x)^k))^(1/3).
a(n) ~ (-1)^(n+1) * c * 36^n / n^(4/3), where c = 0.244280405759762854740979712556383125782589356973734984...

A299786 Expansion of Product_{k>=1} (1 + k^(k-1)*x^k).

Original entry on oeis.org

1, 1, 2, 11, 73, 707, 8547, 127379, 2237804, 45511484, 1049155214, 27060763974, 771662014455, 24109614539775, 818906748562249, 30044648617150066, 1184045057676213763, 49883902402848781573, 2237286132689496359239, 106426356238092171308928, 5352031894869594850387969
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 21 2019

Keywords

Comments

This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = -1, g(n) = (-1) * n^(n-1). - Seiichi Manyama, Aug 22 2020

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Product[(1 + k^(k - 1) x^k), {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d^(k - k/d + 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 20}]
  • PARI
    N=40; x='x+O('x^N); Vec(prod(k=1, N, 1+k^(k-1)*x^k)) \\ Seiichi Manyama, Aug 22 2020

Formula

a(n) ~ n^(n-1) * (1 + exp(-1)/n + (2*exp(-2) + 3*exp(-1)/2)/n^2). - Vaclav Kotesovec, Jan 22 2019

A355387 Number of ways to choose a distinct subsequence of an integer composition of n.

Original entry on oeis.org

1, 2, 5, 14, 37, 98, 259, 682, 1791, 4697, 12303, 32196, 84199, 220087, 575067, 1502176, 3923117, 10244069, 26746171, 69825070, 182276806, 475804961, 1241965456, 3241732629, 8461261457, 22084402087, 57640875725, 150442742575, 392652788250, 1024810764496
Offset: 0

Views

Author

Gus Wiseman, Jul 04 2022

Keywords

Comments

By "distinct" we mean equal subsequences are counted only once. For example, the pair (1,1)(1) is counted only once even though (1) is a subsequence of (1,1) in two ways. The version with multiplicity is A025192.

Examples

			The a(3) = 14 pairings of a composition with a chosen subsequence:
  (3)()     (3)(3)
  (21)()    (21)(1)   (21)(2)    (21)(21)
  (12)()    (12)(1)   (12)(2)    (12)(12)
  (111)()   (111)(1)  (111)(11)  (111)(111)
		

Crossrefs

For partitions we have A000712, composable A339006.
The homogeneous version is A011782, without containment A000302.
With multiplicity we have A025192, for partitions A070933.
The strict case is A032005.
The case of strict subsequences is A236002.
The composable case is A355384, homogeneous without containment A355388.
A075900 counts compositions of each part of a partition.
A304961 counts compositions of each part of a strict partition.
A307068 counts strict compositions of each part of a composition.
A336127 counts compositions of each part of a strict composition.

Programs

  • Mathematica
    Table[Sum[Length[Union[Subsets[y]]],{y,Join@@Permutations/@IntegerPartitions[n]}],{n,0,6}]
  • PARI
    lista(n)=my(f=sum(k=1,n,(x^k+x*O(x^n))/(1-x/(1-x)+x^k)));Vec((1-x)/((1-2*x)*(1-f))) \\ Christian Sievers, May 06 2025

Formula

G.f.: (1-x)/((1-2*x)*(1-f)) where f = Sum_{k>=1} x^k/(1-x/(1-x)+x^k) is the generating function for A331330. - Christian Sievers, May 06 2025

Extensions

a(16) and beyond from Christian Sievers, May 06 2025

A370764 a(n) = 4^n * [x^n] Product_{k>=1} ((1 + 2^(k+1)*x^k) * (1 + 2^(k-1)*x^k))^(1/2).

Original entry on oeis.org

1, 10, 62, 1620, 6966, 157580, 1284012, 19189160, 73908774, 2233414620, 9656822916, 287668788120, -324007115716, 40151699854200, -199460032590312, 7130611518222160, -64971542557275642, 1292318115470489340, -15433712240157937260, 265667290368470451000, -3624776372747687578668
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 01 2024

Keywords

Comments

In general, if d > 1 and g.f. = Product_{k>=1} ((1 + d^(k+1)*x^k) * (1 + d^(k-1)*x^k))^(1/2), then a(n) ~ (-1)^(n+1) * QPochhammer(-1/d) * d^(2*n) / (2*sqrt((1 + 1/d)*Pi) * n^(3/2)).

Crossrefs

Programs

  • Mathematica
    nmax = 25; CoefficientList[Series[Product[(1+2^(k+1)*x^k)*(1+2^(k-1)*x^k), {k, 1, nmax}]^(1/2), {x, 0, nmax}], x] * 4^Range[0, nmax]
    nmax = 25; CoefficientList[Series[Product[(1+2^(3*k+1)*x^k)*(1+2^(3*k-1)*x^k), {k, 1, nmax}]^(1/2), {x, 0, nmax}], x]
    nmax = 25; CoefficientList[Series[(2*QPochhammer[-2, x]*QPochhammer[-1/2, x])^(1/2)/3, {x, 0, nmax}], x] * 8^Range[0, nmax]

Formula

G.f.: Product_{k>=1} ((1 + 2^(3*k+1)*x^k) * (1 + 2^(3*k-1)*x^k))^(1/2).
a(n) ~ (-1)^(n+1) * c * 16^n / n^(3/2), where c = QPochhammer(-1/2) / sqrt(6*Pi) = 0.278865402428524528968820654198674...

A352402 Expansion of Product_{k>=1} 1 / (1 + 2^(k-1)*x^k).

Original entry on oeis.org

1, -1, -1, -3, -1, -7, -1, -15, 31, -63, 159, -95, 671, -287, 3231, -2975, 15519, -7839, 44191, -34975, 224415, -291999, 863391, -990367, 2927775, -4902047, 12561567, -27225247, 56470687, -102640799, 152153247, -422620319, 877243551, -2278272159, 3357125791
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 08 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 34; CoefficientList[Series[Product[1/(1 + 2^(k - 1) x^k), {k, 1, nmax}], {x, 0, nmax}], x]
    Table[Sum[(-1)^k Length[IntegerPartitions[n, {k}]] 2^(n - k), {k, 0, n}], {n, 0, 34}]

Formula

a(n) = Sum_{k=0..n} (-1)^k * p(n,k) * 2^(n-k), where p(n,k) is the number of partitions of n into k parts.

A359041 Number of finite sets of integer partitions with all equal sums and total sum n.

Original entry on oeis.org

1, 1, 2, 3, 6, 7, 14, 15, 32, 31, 63, 56, 142, 101, 240, 211, 467, 297, 985, 490, 1524, 1247, 2542, 1255, 6371, 1979, 7486, 7070, 14128, 4565, 32953, 6842, 42229, 37863, 56266, 17887, 192914, 21637, 145820, 197835, 371853, 44583, 772740, 63261, 943966, 1124840
Offset: 0

Views

Author

Gus Wiseman, Dec 14 2022

Keywords

Examples

			The a(1) = 1 through a(6) = 14 sets:
  {(1)}  {(2)}   {(3)}    {(4)}       {(5)}      {(6)}
         {(11)}  {(21)}   {(22)}      {(32)}     {(33)}
                 {(111)}  {(31)}      {(41)}     {(42)}
                          {(211)}     {(221)}    {(51)}
                          {(1111)}    {(311)}    {(222)}
                          {(2),(11)}  {(2111)}   {(321)}
                                      {(11111)}  {(411)}
                                                 {(2211)}
                                                 {(3111)}
                                                 {(21111)}
                                                 {(111111)}
                                                 {(3),(21)}
                                                 {(3),(111)}
                                                 {(21),(111)}
		

Crossrefs

This is the constant-sum case of A261049, ordered A358906.
The version for all different sums is A271619, ordered A336342.
Allowing repetition gives A305551, ordered A279787.
The version for compositions instead of partitions is A358904.
A001970 counts multisets of partitions.
A034691 counts multisets of compositions, ordered A133494.
A098407 counts sets of compositions, ordered A358907.

Programs

  • Mathematica
    Table[If[n==0,1,Sum[Binomial[PartitionsP[d],n/d],{d,Divisors[n]}]],{n,0,50}]
  • PARI
    a(n) = if (n, sumdiv(n, d, binomial(numbpart(d), n/d)), 1); \\ Michel Marcus, Dec 14 2022

Formula

a(n) = Sum_{d|n} binomial(A000041(d),n/d).
Previous Showing 31-36 of 36 results.