cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 48 results. Next

A374697 Number of integer compositions of n whose leaders of strictly increasing runs are weakly decreasing.

Original entry on oeis.org

1, 1, 2, 4, 8, 15, 29, 55, 103, 193, 360, 669, 1239, 2292, 4229, 7794, 14345, 26375, 48452, 88946, 163187, 299250, 548543, 1005172, 1841418, 3372603, 6175853, 11307358, 20699979, 37890704, 69351776, 126926194, 232283912, 425075191, 777848212, 1423342837, 2604427561
Offset: 0

Views

Author

Gus Wiseman, Jul 27 2024

Keywords

Comments

The leaders of strictly increasing runs in a sequence are obtained by splitting it into maximal strictly increasing subsequences and taking the first term of each.
Also the number of ways to choose a strict integer partition of each part of an integer composition of n (A304969) such that the minima are weakly decreasing [weakly increasing works too].

Examples

			The composition (1,2,1,3,2,3) has strictly increasing runs ((1,2),(1,3),(2,3)), with leaders (1,1,2), so is not counted under a(12).
The a(0) = 1 through a(5) = 15 compositions:
  ()  (1)  (2)   (3)    (4)     (5)
           (11)  (12)   (13)    (14)
                 (21)   (22)    (23)
                 (111)  (31)    (32)
                        (112)   (41)
                        (121)   (113)
                        (211)   (131)
                        (1111)  (212)
                                (221)
                                (311)
                                (1112)
                                (1121)
                                (1211)
                                (2111)
                                (11111)
		

Crossrefs

The opposite version is A374764.
Ranked by positions of weakly decreasing rows in A374683.
Interchanging weak/strict appears to give A188920, opposite A358836.
Types of runs (instead of strictly increasing):
- For leaders of identical runs we have A000041.
- For leaders of anti-runs we have A374682.
- For leaders of weakly increasing runs we have A189076, complement A374636.
- For leaders of weakly decreasing runs we have A374747.
- For leaders of strictly decreasing runs we have A374765.
Types of run-leaders (instead of weakly decreasing):
- For identical leaders we have A374686, ranks A374685.
- For distinct leaders we have A374687, ranks A374698.
- For weakly increasing leaders we have A374690.
- For strictly increasing leaders we have A374688.
- For strictly decreasing leaders we have A374689.
A003242 counts anti-run compositions, ranks A333489.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
A335456 counts patterns matched by compositions.
A373949 counts compositions by run-compressed sum, opposite A373951.
A374700 counts compositions by sum of leaders of strictly increasing runs.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],GreaterEqual@@First/@Split[#,Less]&]],{n,0,15}]
  • PARI
    seq(n) = Vec(1/prod(k=1, n, 1 - x^k*prod(j=k+1, n-k, 1 + x^j, 1 + O(x^(n-k+1))))) \\ Andrew Howroyd, Jul 31 2024

Formula

G.f.: 1/(Product_{k>=1} (1 - x^k*Product_{j>=k+1} (1 + x^j))). - Andrew Howroyd, Jul 31 2024

Extensions

a(26) onwards from Andrew Howroyd, Jul 31 2024

A374762 Number of integer compositions of n whose leaders of strictly decreasing runs are strictly increasing.

Original entry on oeis.org

1, 1, 1, 3, 4, 6, 11, 18, 27, 41, 64, 98, 151, 229, 339, 504, 746, 1097, 1618, 2372, 3451, 5009, 7233, 10394, 14905, 21316, 30396, 43246, 61369, 86830, 122529, 172457, 242092, 339062, 473850, 660829, 919822, 1277935, 1772174, 2453151, 3389762, 4675660, 6438248
Offset: 0

Views

Author

Gus Wiseman, Jul 29 2024

Keywords

Comments

The leaders of strictly decreasing runs in a sequence are obtained by splitting it into maximal strictly decreasing subsequences and taking the first term of each.
Also the number of ways to choose a strict integer partition of each part of an integer composition of n (A304969) such that the maxima are strictly decreasing. The weakly decreasing version is A374764.

Examples

			The a(0) = 1 through a(7) = 18 compositions:
  ()  (1)  (2)  (3)   (4)    (5)    (6)    (7)
                (12)  (13)   (14)   (15)   (16)
                (21)  (31)   (23)   (24)   (25)
                      (121)  (32)   (42)   (34)
                             (41)   (51)   (43)
                             (131)  (123)  (52)
                                    (132)  (61)
                                    (141)  (124)
                                    (213)  (142)
                                    (231)  (151)
                                    (321)  (214)
                                           (232)
                                           (241)
                                           (421)
                                           (1213)
                                           (1231)
                                           (1321)
                                           (2131)
		

Crossrefs

For partitions instead of compositions we have A000009.
The weak version appears to be A188900.
The opposite version is A374689.
Other types of runs (instead of strictly decreasing):
- For leaders of identical runs we have A000041.
- For leaders of weakly increasing runs we have A374634.
- For leaders of anti-runs we have A374679.
Other types of run-leaders (instead of strictly increasing):
- For identical leaders we have A374760, ranks A374759.
- For distinct leaders we have A374761, ranks A374767.
- For strictly decreasing leaders we have A374763.
- For weakly increasing leaders we have A374764.
- For weakly decreasing leaders we have A374765.
A003242 counts anti-run compositions, ranks A333489.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
A274174 counts contiguous compositions, ranks A374249.
A373949 counts compositions by run-compressed sum, opposite A373951.
A374700 counts compositions by sum of leaders of strictly increasing runs.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],Less@@First/@Split[#,Greater]&]],{n,0,15}]
  • PARI
    seq(n) = Vec(prod(k=1, n, 1 + x^k*prod(j=1, min(n-k,k-1), 1 + x^j, 1 + O(x^(n-k+1))))) \\ Andrew Howroyd, Jul 31 2024

Formula

G.f.: Product_{k>=1} (1 + x^k*Product_{j=1..k-1} (1 + x^j)). - Andrew Howroyd, Jul 31 2024

Extensions

a(24) onwards from Andrew Howroyd, Jul 31 2024

A374764 Number of integer compositions of n whose leaders of strictly decreasing runs are weakly increasing.

Original entry on oeis.org

1, 1, 2, 4, 7, 13, 23, 40, 69, 118, 199, 333, 553, 911, 1492, 2428, 3928, 6323, 10129, 16151, 25646, 40560, 63905, 100332, 156995, 244877, 380803, 590479, 913100, 1408309, 2166671, 3325445, 5092283, 7780751, 11863546, 18052080, 27415291, 41556849, 62879053, 94975305, 143213145
Offset: 0

Views

Author

Gus Wiseman, Jul 30 2024

Keywords

Comments

The leaders of strictly decreasing runs in a sequence are obtained by splitting it into maximal strictly decreasing subsequences and taking the first term of each.
Also the number of ways to choose a strict integer partition of each part of an integer composition of n (A304969) such that the maxima are weakly increasing [but weakly decreasing works too]. The strictly increasing version is A374762.

Examples

			The composition (1,1,2,1) has strictly decreasing runs ((1),(1),(2,1)) with leaders (1,1,2) so is counted under a(5).
The composition (1,2,1,1) has strictly decreasing runs ((1),(2,1),(1)) with leaders (1,2,1) so is not counted under a(5).
The a(0) = 1 through a(5) = 13 compositions:
  ()  (1)  (2)   (3)    (4)     (5)
           (11)  (12)   (13)    (14)
                 (21)   (22)    (23)
                 (111)  (31)    (32)
                        (112)   (41)
                        (121)   (113)
                        (1111)  (122)
                                (131)
                                (212)
                                (221)
                                (1112)
                                (1121)
                                (11111)
		

Crossrefs

For partitions instead of compositions we have A034296.
For strictly increasing leaders we have A374688.
The opposite version is A374697.
Other types of runs (instead of strictly decreasing):
- For leaders of identical runs we have A000041.
- For leaders of anti-runs we have A374681.
- For leaders of weakly increasing runs we have A374635.
- For leaders of strictly increasing runs we have A374690.
- For leaders of weakly decreasing runs we have A188900.
Other types of run-leaders (instead of weakly increasing):
- For identical leaders we have A374760, ranks A374759.
- For distinct leaders we have A374761, ranks A374767.
- For strictly increasing leaders we have A374762.
- For weakly decreasing leaders we have A374765.
- For strictly decreasing leaders we have A374763.
A003242 counts anti-run compositions, ranks A333489.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
A274174 counts contiguous compositions, ranks A374249.
A335548 counts non-contiguous compositions, ranks A374253.
A373949 counts compositions by run-compressed sum, opposite A373951.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],LessEqual@@First/@Split[#,Greater]&]],{n,0,15}]
  • PARI
    seq(n) = Vec(1/prod(k=1, n, 1 - x^k*prod(j=1, min(n-k,k-1), 1 + x^j, 1 + O(x^(n-k+1))))) \\ Andrew Howroyd, Jul 31 2024

Formula

G.f.: 1/(Product_{k>=1} (1 - x^k*Product_{j=1..k-1} (1 + x^j))). - Andrew Howroyd, Jul 31 2024

Extensions

a(24) onwards from Andrew Howroyd, Jul 31 2024

A382204 Number of normal multiset partitions of weight n into constant blocks with a common sum.

Original entry on oeis.org

1, 1, 2, 3, 4, 4, 7, 5, 8, 8, 10, 8, 15, 9, 14, 15, 17, 13, 22, 14, 25, 21, 23, 19, 34, 24, 29, 28, 37, 27, 45, 29, 44, 38, 43, 43, 59, 40, 51, 48, 69, 48, 71, 52, 73, 69, 72, 61, 93, 72, 91, 77, 99, 78, 105, 95, 119, 95, 113, 96, 146, 107, 126, 123, 151, 130
Offset: 0

Views

Author

Gus Wiseman, Mar 26 2025

Keywords

Comments

We call a multiset or multiset partition normal iff it covers an initial interval of positive integers. The weight of a multiset partition is the sum of sizes of its blocks.

Examples

			The a(1) = 1 through a(6) = 7 multiset partitions:
  {1} {11}   {111}     {1111}       {11111}         {111111}
      {1}{1} {2}{11}   {11}{11}     {2}{11}{11}     {111}{111}
             {1}{1}{1} {2}{2}{11}   {2}{2}{2}{11}   {22}{1111}
                       {1}{1}{1}{1} {1}{1}{1}{1}{1} {11}{11}{11}
                                                    {2}{2}{11}{11}
                                                    {2}{2}{2}{2}{11}
                                                    {1}{1}{1}{1}{1}{1}
The a(1) = 1 through a(7) = 5 factorizations:
  2  4    8      16       32         64           128
     2*2  3*4    4*4      3*4*4      8*8          3*4*4*4
          2*2*2  3*3*4    3*3*3*4    9*16         3*3*3*4*4
                 2*2*2*2  2*2*2*2*2  4*4*4        3*3*3*3*3*4
                                     3*3*4*4      2*2*2*2*2*2*2
                                     3*3*3*3*4
                                     2*2*2*2*2*2
		

Crossrefs

Without a common sum we have A055887.
Twice-partitions of this type are counted by A279789.
Without constant blocks we have A326518.
For distinct block-sums and strict blocks we have A381718.
Factorizations of this type are counted by A381995.
For distinct instead of equal block-sums we have A382203.
For strict instead of constant blocks we have A382429.
A000670 counts patterns, ranked by A055932 and A333217, necklace A019536.
A001055 count multiset partitions of prime indices, strict A045778.
A089259 counts set multipartitions of integer partitions.
A255906 counts normal multiset partitions, row sums of A317532.
A321469 counts multiset partitions with distinct block-sums, ranks A326535.
Normal multiset partitions: A035310, A304969, A356945.
Set multipartitions: A116540, A270995, A296119, A318360.
Set multipartitions with distinct sums: A279785, A381806, A381870.
Constant blocks with distinct sums: A381635, A381636, A381716.

Programs

  • Mathematica
    allnorm[n_Integer]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[mset_]:=Union[Sort[Sort/@(#/.x_Integer:>mset[[x]])]&/@sps[Range[Length[mset]]]];
    Table[Length[Join@@(Select[mps[#],SameQ@@Total/@#&&And@@SameQ@@@#&]&/@allnorm[n])],{n,0,5}]
  • PARI
    h(s,x)=my(t=0,p=1,k=1);while(s%k==0,p*=1/(1-x^(s/k))-1;t+=p;k+=1);t
    lista(n)=Vec(1+sum(s=1,n,h(s,x+O(x*x^n)))) \\ Christian Sievers, Apr 05 2025

Formula

G.f.: 1 + Sum_{s>=1} Sum_{k=1..A055874(s)} Product_{v=1..k} (1/(1-x^(s/v)) - 1). - Christian Sievers, Apr 05 2025

Extensions

Terms a(16) and beyond from Christian Sievers, Apr 04 2025

A307068 Expansion of 1/(1 - Sum_{k>=1} k!*x^(k*(k+1)/2) / Product_{j=1..k} (1 - x^j)).

Original entry on oeis.org

1, 1, 2, 6, 14, 34, 88, 216, 532, 1322, 3290, 8142, 20192, 50080, 124144, 307878, 763474, 1893038, 4694060, 11639580, 28861736, 71567206, 177460750, 440037738, 1091134276, 2705618900, 6708953156, 16635775698, 41250705518, 102286806130, 253634237896, 628921097352, 1559496588628
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 22 2019

Keywords

Comments

Invert transform of A032020.
Number of ways to choose a strict composition of each part of a composition of n. - Gus Wiseman, Jul 18 2020
The Invert transform T(a) of a sequence a is given by T(a)n = Sum_c Product_i a(c_i), where the sum is over all compositions c of n. - _Gus Wiseman, Aug 01 2020

Examples

			From _Gus Wiseman_, Jul 18 2020: (Start)
The a(1) = 1 through a(4) = 14 ways to choose a strict composition of each part of a composition:
    (1)  (2)      (3)          (4)
         (1),(1)  (1,2)        (1,3)
                  (2,1)        (3,1)
                  (1),(2)      (1),(3)
                  (2),(1)      (2),(2)
                  (1),(1),(1)  (3),(1)
                               (1),(1,2)
                               (1),(2,1)
                               (1,2),(1)
                               (2,1),(1)
                               (1),(1),(2)
                               (1),(2),(1)
                               (2),(1),(1)
                               (1),(1),(1),(1)
(End)
		

Crossrefs

The version for partitions is A270995.
Starting with a strict composition gives A336139.
Strict compositions are counted by A032020.
Partitions of each part of a partition are A063834.
Compositions of each part of a partition are A075900.
Compositions of each part of a composition are A133494.
Strict partitions of each part of a strict partition are A279785.
Compositions of each part of a strict partition are A304961.
Strict partitions of each part of a composition are A304969.
Compositions of each part of a strict composition are A336127.
Set partitions of strict compositions are A336140.
Strict compositions of each part of a partition are A336141.

Programs

  • Magma
    m:=80;
    R:=PowerSeriesRing(Integers(), m);
    Coefficients(R!( 1/(1 - (&+[Factorial(k)*x^Binomial(k+1,2)/(&*[ 1-x^j: j in [1..k]]): k in [1..m+2]]) ) )); // G. C. Greubel, Jan 25 2024
    
  • Maple
    T:= proc(n, k) option remember; `if`(k<0 or n<0, 0,
          `if`(k=0, `if`(n=0, 1, 0), T(n-k, k) +k*T(n-k, k-1)))
        end:
    g:= proc(n) option remember; add(T(n, k), k=0..floor((sqrt(8*n+1)-1)/2)) end:
    a:= proc(n) option remember; `if`(n<1, 1,
          add(a(n-i)*g(i), i=1..n))
        end:
    seq(a(n), n=0..32);  # Alois P. Heinz, Dec 16 2022
  • Mathematica
    nmax = 32; CoefficientList[Series[1/(1 - Sum[k!*x^(k*(k+1)/2)/Product[ (1-x^j), {j,k}], {k,nmax}]), {x, 0, nmax}], x]
  • SageMath
    m=80;
    def p(x, j): return product(1-x^k for k in range(1,j+1))
    def f(x): return 1/(1 - sum(factorial(j)*x^binomial(j+1,2)/p(x,j) for j in range(1, m+3)) )
    def A307068_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( f(x) ).list()
    A307068_list(m) # G. C. Greubel, Jan 25 2024

Formula

a(0) = 1; a(n) = Sum_{k=1..n} A032020(k)*a(n-k).

A356935 Numbers whose prime indices all have odd bigomega (number of prime factors with multiplicity). Products of primes indexed by elements of A026424. MM-numbers of finite multisets of finite odd-length multisets of positive integers.

Original entry on oeis.org

1, 3, 5, 9, 11, 15, 17, 19, 25, 27, 31, 33, 37, 41, 45, 51, 55, 57, 59, 61, 67, 71, 75, 81, 83, 85, 93, 95, 99, 103, 107, 109, 111, 113, 121, 123, 125, 127, 131, 135, 153, 155, 157, 165, 171, 177, 179, 181, 183, 185, 187, 191, 193, 197, 201, 205, 209, 211, 213
Offset: 1

Views

Author

Gus Wiseman, Sep 12 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. We define the multiset of multisets with MM-number n to be formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. The size of this multiset of multisets is A302242(n). For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.

Examples

			The initial terms and corresponding multiset partitions:
   1: {}
   3: {{1}}
   5: {{2}}
   9: {{1},{1}}
  11: {{3}}
  15: {{1},{2}}
  17: {{4}}
  19: {{1,1,1}}
  25: {{2},{2}}
  27: {{1},{1},{1}}
  31: {{5}}
  33: {{1},{3}}
  37: {{1,1,2}}
  41: {{6}}
  45: {{1},{1},{2}}
  51: {{1},{4}}
  55: {{2},{3}}
  57: {{1},{1,1,1}}
		

Crossrefs

A000041 counts integer partitions, strict A000009.
A000688 counts factorizations into prime powers.
A001055 counts factorizations.
A001221 counts prime divisors, sum A001414.
A001222 counts prime factors with multiplicity.
A056239 adds up prime indices, row sums of A112798.
Odd-size multisets are ctd by A000302, A027193, A058695, rkd by A026424.
Other types: A050330, A356932, A356933, A356934.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],OddQ[Times@@Length/@primeMS/@primeMS[#]]&]

A358906 Number of finite sequences of distinct integer partitions with total sum n.

Original entry on oeis.org

1, 1, 2, 7, 13, 35, 87, 191, 470, 1080, 2532, 5778, 13569, 30715, 69583, 160386, 360709, 814597, 1824055, 4102430, 9158405, 20378692, 45215496, 100055269, 221388993, 486872610, 1069846372, 2343798452, 5127889666, 11186214519, 24351106180, 52896439646
Offset: 0

Views

Author

Gus Wiseman, Dec 07 2022

Keywords

Examples

			The a(1) = 1 through a(4) = 13 sequences:
  ((1))  ((2))   ((3))      ((4))
         ((11))  ((21))     ((22))
                 ((111))    ((31))
                 ((1)(2))   ((211))
                 ((2)(1))   ((1111))
                 ((1)(11))  ((1)(3))
                 ((11)(1))  ((3)(1))
                            ((11)(2))
                            ((1)(21))
                            ((2)(11))
                            ((21)(1))
                            ((1)(111))
                            ((111)(1))
		

Crossrefs

This is the case of A055887 with distinct partitions.
The unordered version is A261049.
The case of twice-partitions is A296122.
The case of distinct sums is A336342, constant sums A279787.
The version for sequences of compositions is A358907.
The case of weakly decreasing lengths is A358908.
The case of distinct lengths is A358912.
The version for strict partitions is A358913, distinct case of A304969.
A001970 counts multiset partitions of integer partitions.
A063834 counts twice-partitions.
A358830 counts twice-partitions with distinct lengths.
A358901 counts partitions with all distinct Omegas.

Programs

  • Maple
    b:= proc(n, i, p) option remember; `if`(n=0, p!, `if`(i<1, 0, add(
          binomial(combinat[numbpart](i), j)*b(n-i*j, i-1, p+j), j=0..n/i)))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..32);  # Alois P. Heinz, Feb 13 2024
  • Mathematica
    ptnseq[n_]:=Join@@Table[Tuples[IntegerPartitions/@comp],{comp,Join@@Permutations/@IntegerPartitions[n]}];
    Table[Length[Select[ptnseq[n],UnsameQ@@#&]],{n,0,10}]

Formula

a(n) = Sum_{k} A330463(n,k) * k!.

A382429 Number of normal multiset partitions of weight n into sets with a common sum.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 13, 26, 57, 113, 283, 854, 2401, 6998, 24072, 85061, 308956, 1190518, 4770078, 19949106, 87059592
Offset: 0

Views

Author

Gus Wiseman, Mar 26 2025

Keywords

Comments

We call a multiset or multiset partition normal iff it covers an initial interval of positive integers. The weight of a multiset partition is the sum of sizes of its blocks.

Examples

			The a(1) = 1 through a(6) = 13 partitions:
  {1} {12}   {123}     {1234}       {12345}         {123456}
      {1}{1} {3}{12}   {12}{12}     {24}{123}       {123}{123}
             {1}{1}{1} {14}{23}     {34}{124}       {125}{134}
                       {3}{3}{12}   {3}{12}{12}     {135}{234}
                       {1}{1}{1}{1} {5}{14}{23}     {145}{235}
                                    {3}{3}{3}{12}   {12}{12}{12}
                                    {1}{1}{1}{1}{1} {14}{14}{23}
                                                    {14}{23}{23}
                                                    {16}{25}{34}
                                                    {3}{3}{12}{12}
                                                    {5}{5}{14}{23}
                                                    {3}{3}{3}{3}{12}
                                                    {1}{1}{1}{1}{1}{1}
The corresponding factorizations:
  2  6    30     210      2310       30030
     2*2  5*6    6*6      21*30      30*30
          2*2*2  14*15    35*42      6*6*6
                 5*5*6    5*6*6      66*70
                 2*2*2*2  5*5*5*6    110*105
                          11*14*15   154*165
                          2*2*2*2*2  5*5*6*6
                                     14*14*15
                                     14*15*15
                                     26*33*35
                                     5*5*5*5*6
                                     11*11*14*15
                                     2*2*2*2*2*2
		

Crossrefs

Without the common sum we have A116540 (normal set multipartitions).
Twice-partitions of this type are counted by A279788.
For common sizes instead of sums we have A317583.
Without strict blocks we have A326518, non-strict blocks A326517.
For a common length instead of sum we have A331638.
For distinct instead of equal block-sums we have A381718.
Factorizations of this type are counted by A382080.
For distinct block-sums and constant blocks we have A382203.
For constant instead of strict blocks we have A382204.
A000670 counts patterns, ranked by A055932 and A333217, necklace A019536.
A001055 count multiset partitions of prime indices, strict A045778.
A321469 counts multiset partitions with distinct block-sums, ranks A326535.
Normal multiset partitions: A035310, A255906, A304969, A317532.
Set multipartitions: A089259, A116539, A270995, A296119, A318360.
Set multipartitions with distinct sums: A279785, A381806, A381870.
Constant blocks with distinct sums: A381635, A381636, A381716.

Programs

  • Mathematica
    allnorm[n_Integer]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[mset_]:=Union[Sort[Sort/@(#/.x_Integer:>mset[[x]])]&/@sps[Range[Length[mset]]]];
    Table[Length[Join@@(Select[mps[#],SameQ@@Total/@#&&And@@UnsameQ@@@#&]&/@allnorm[n])],{n,0,5}]

Extensions

a(11) from Robert Price, Mar 30 2025
a(12)-a(20) from Christian Sievers, Apr 06 2025

A356939 MM-numbers of multisets of intervals. Products of primes indexed by members of A073485.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 20, 22, 24, 25, 26, 27, 30, 31, 32, 33, 34, 36, 39, 40, 41, 44, 45, 47, 48, 50, 51, 52, 54, 55, 59, 60, 62, 64, 65, 66, 67, 68, 72, 75, 78, 80, 81, 82, 83, 85, 88, 90, 93, 94, 96, 99, 100, 102, 104, 108
Offset: 1

Views

Author

Gus Wiseman, Sep 12 2022

Keywords

Comments

An interval such as {3,4,5} is a set of positive integers with all differences of adjacent elements equal to 1.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define the multiset of multisets with MM-number n to be formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. The size of this multiset of multisets is A302242(n). For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.

Examples

			The initial terms and corresponding multisets of multisets:
   1: {}
   2: {{}}
   3: {{1}}
   4: {{},{}}
   5: {{2}}
   6: {{},{1}}
   8: {{},{},{}}
   9: {{1},{1}}
  10: {{},{2}}
  11: {{3}}
  12: {{},{},{1}}
  13: {{1,2}}
  15: {{1},{2}}
  16: {{},{},{},{}}
		

Crossrefs

The initial version is A356940.
Intervals are counted by A000012, A001227, ranked by A073485.
Other types: A107742, A356936, A356937, A356938.
Other conditions: A302478, A302492, A356930, A356935, A356944, A356955.
A000041 counts integer partitions, strict A000009.
A000688 counts factorizations into prime powers.
A001055 counts factorizations.
A001221 counts prime divisors, sum A001414.
A001222 counts prime factors with multiplicity.
A056239 adds up prime indices, row sums of A112798.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    chQ[y_]:=Or[Length[y]<=1,Union[Differences[y]]=={1}];
    Select[Range[100],And@@chQ/@primeMS/@primeMS[#]&]

A382203 Number of normal multiset partitions of weight n into constant multisets with distinct sums.

Original entry on oeis.org

1, 1, 2, 4, 9, 19, 37, 76, 159, 326, 671, 1376, 2815, 5759, 11774, 24083, 49249, 100632, 205490, 419420, 855799, 1745889, 3561867, 7268240, 14836127, 30295633, 61888616
Offset: 0

Views

Author

Gus Wiseman, Mar 26 2025

Keywords

Comments

We call a multiset or multiset partition normal iff it covers an initial interval of positive integers. The weight of a multiset partition is the sum of sizes of its blocks.

Examples

			The a(1) = 1 through a(4) = 9 multiset partitions:
  {{1}}  {{1,1}}    {{1,1,1}}      {{1,1,1,1}}
         {{1},{2}}  {{1},{1,1}}    {{1},{1,1,1}}
                    {{1},{2,2}}    {{1,1},{2,2}}
                    {{1},{2},{3}}  {{1},{2,2,2}}
                                   {{2},{1,1,1}}
                                   {{1},{2},{2,2}}
                                   {{1},{2},{3,3}}
                                   {{1},{3},{2,2}}
                                   {{1},{2},{3},{4}}
The a(5) = 19 factorizations:
  32  2*16  2*3*27   2*3*5*25  2*3*5*7*11
      4*8   2*4*9    2*3*5*9
      2*81  2*3*8    2*3*5*49
      4*27  2*3*125  2*3*7*25
      9*8   2*9*25
      3*16  2*5*27
            5*4*9
		

Crossrefs

Without distinct sums we have A055887.
Twice-partitions of this type are counted by A279786.
For distinct blocks instead of sums we have A304969.
Without constant blocks we have A326519.
Factorizations of this type are counted by A381635.
For strict instead of constant blocks we have A381718.
For equal instead of distinct block-sums we have A382204.
For equal block-sums and strict blocks we have A382429.
A000670 counts patterns, ranked by A055932 and A333217, necklace A019536.
A001055 count multiset partitions of prime indices, strict A045778.
A089259 counts set multipartitions of integer partitions.
A321469 counts multiset partitions with distinct block-sums, ranks A326535.
Normal multiset partitions: A035310, A116540, A255906, A317532.
Set multipartitions with distinct sums: A279785, A381806, A381870.

Programs

  • Mathematica
    allnorm[n_Integer]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[mset_]:=Union[Sort[Sort/@(#/.x_Integer:>mset[[x]])]&/@sps[Range[Length[mset]]]];
    Table[Length[Join@@(Select[mps[#],UnsameQ@@Total/@#&&And@@SameQ@@@#&]&/@allnorm[n])],{n,0,5}]

Extensions

a(14)-a(26) from Christian Sievers, Apr 04 2025
Previous Showing 11-20 of 48 results. Next