cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A317073 Number of antichains of multisets with multiset-join a normal multiset of size n.

Original entry on oeis.org

1, 1, 3, 16, 198, 9890, 8592538
Offset: 0

Views

Author

Gus Wiseman, Jul 20 2018

Keywords

Comments

An antichain of multisets is a finite set of finite nonempty multisets, none of which is a submultiset of any other. A multiset is normal if it spans an initial interval of positive integers. The multiset-join of a set of multisets has the same vertices with multiplicities equal to the maxima of the multiplicities in the edges.

Examples

			The a(3) = 16 antichains of multisets:
  (111),
  (122), (12)(22), (1)(22),
  (112), (11)(12), (2)(11),
  (123), (13)(23), (12)(23), (12)(13), (12)(13)(23), (3)(12), (2)(13), (1)(23), (1)(2)(3).
		

Crossrefs

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    multijoin[mss__]:=Join@@Table[Table[x,{Max[Count[#,x]&/@{mss}]}],{x,Union[mss]}]
    submultisetQ[M_,N_]:=Or[Length[M]==0,MatchQ[{Sort[List@@M],Sort[List@@N]},{{x_,Z___},{_,x_,W___}}/;submultisetQ[{Z},{W}]]];
    allnorm[n_]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1];
    auu[m_]:=Select[stableSets[Union[Rest[Subsets[m]]],submultisetQ],multijoin@@#==m&];
    Table[Length[Join@@Table[auu[m],{m,allnorm[n]}]],{n,5}]

Extensions

a(6) from Robert Price, Jun 21 2021

A304999 Number of labeled antichains of finite sets spanning n vertices with singleton edges allowed.

Original entry on oeis.org

1, 1, 5, 53, 1577, 212137, 496946349, 309068823607069, 14369391923126237496803793, 146629927766168786109802623629262590838145873
Offset: 0

Views

Author

Gus Wiseman, May 23 2018

Keywords

Comments

Only the non-singleton edges are required to form an antichain.

Examples

			The a(2) = 5 antichains:
  {{1,2}}
  {{1},{2}}
  {{1},{1,2}}
  {{2},{1,2}}
  {{1},{2},{1,2}}
		

Crossrefs

Formula

Exponential transform of A304985.
Inverse binomial transform of A305000. - Aniruddha Biswas, May 12 2024

Extensions

a(5)-a(8) from Gus Wiseman, May 31 2018
a(9) from Aniruddha Biswas, May 12 2024

A323816 Number of set-systems covering n vertices with no singletons.

Original entry on oeis.org

1, 0, 1, 12, 1993, 67098768, 144115187673233113, 1329227995784915871895000745158568460, 226156424291633194186662080095093570015284114833799899660370362545578585265
Offset: 0

Views

Author

Gus Wiseman, Jan 30 2019

Keywords

Examples

			The a(3) = 12 set-systems:
  {{1,2,3}}
  {{1,2}, {1,3}}
  {{1,2}, {2,3}}
  {{1,3}, {2,3}}
  {{1,2}, {1,2,3}}
  {{1,3}, {1,2,3}}
  {{2,3}, {1,2,3}}
  {{1,2}, {1,3}, {2,3}}
  {{1,2}, {1,3}, {1,2,3}}
  {{1,2}, {2,3}, {1,2,3}}
  {{1,3}, {2,3}, {1,2,3}}
  {{1,2}, {1,3}, {2,3}, {1,2,3}}
		

Crossrefs

Cf. A000295, A000371, A000612, A003465 (with singletons), A006129 (covers by pairs), A016031, A055154, A055621, A305001, A317795 (unlabeled case), A323817 (connected case).

Programs

  • Magma
    [(&+[(-1)^(n-j)*Binomial(n,j)*2^(2^j -j-1): j in [0..n]]): n in [0..12]]; // G. C. Greubel, Oct 05 2022
    
  • Maple
    a:= n-> add(2^(2^(n-j)-n+j-1)*binomial(n, j)*(-1)^j, j=0..n):
    seq(a(n), n=0..8);  # Alois P. Heinz, Jan 30 2019
  • Mathematica
    Table[Sum[(-1)^(n-k)*Binomial[n,k]*2^(2^k-k-1),{k,0,n}],{n,0,8}]
  • SageMath
    def A323816(n): return sum((-1)^j*binomial(n,j)*2^(2^(n-j) -n+j-1) for j in range(n+1))
    [A323816(n) for n in range(12)] # G. C. Greubel, Oct 05 2022

Formula

Inverse binomial transform of A016031 shifted once to the left.

A317074 Number of antichains of multisets with multiset-join a strongly normal multiset of size n.

Original entry on oeis.org

1, 1, 3, 13, 148, 7685
Offset: 0

Views

Author

Gus Wiseman, Jul 20 2018

Keywords

Comments

An antichain of multisets is a finite set of finite nonempty multisets, none of which is a submultiset of any other. A multiset is strongly normal if it spans an initial interval of positive integers with weakly decreasing multiplicities. The multiset-join of a multiset system has the same vertices with multiplicities equal to the maxima of the multiplicities in the edges.

Examples

			The a(3) = 13 antichains of multisets:
  (111),
  (112), (11)(12), (2)(11),
  (123), (13)(23), (12)(23), (12)(13), (12)(13)(23), (3)(12), (2)(13), (1)(23), (1)(2)(3).
		

Crossrefs

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    multijoin[mss__]:=Join@@Table[Table[x,{Max[Count[#,x]&/@{mss}]}],{x,Union[mss]}];
    submultisetQ[M_,N_]:=Or[Length[M]==0,MatchQ[{Sort[List@@M],Sort[List@@N]},{{x_,Z___},{_,x_,W___}}/;submultisetQ[{Z},{W}]]];
    strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
    auu[m_]:=Select[stableSets[Union[Rest[Subsets[m]]],submultisetQ],multijoin@@#==m&];
    Table[Length[Join@@Table[auu[m],{m,strnorm[n]}]],{n,5}]

A317075 Number of connected antichains of multisets with multiset-join a normal multiset of size n.

Original entry on oeis.org

1, 1, 2, 10, 147, 8998
Offset: 0

Views

Author

Gus Wiseman, Jul 20 2018

Keywords

Comments

An antichain of multisets is a finite set of finite nonempty multisets, none of which is a submultiset of any other. A multiset is normal if it spans an initial interval of positive integers. The multiset-join of a multiset system has the same vertices with multiplicities equal to the maxima of the multiplicities in the edges.

Examples

			The a(3) = 10 connected antichains of multisets:
  (111),
  (122), (12)(22),
  (112), (11)(12),
  (123), (13)(23), (12)(23), (12)(13), (12)(13)(23).
		

Crossrefs

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    multijoin[mss__]:=Join@@Table[Table[x,{Max[Count[#,x]&/@{mss}]}],{x,Union[mss]}];
    submultisetQ[M_,N_]:=Or[Length[M]==0,MatchQ[{Sort[List@@M],Sort[List@@N]},{{x_,Z___},{_,x_,W___}}/;submultisetQ[{Z},{W}]]];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],multijoin@@s[[c[[1]]]]]]]]];
    allnorm[n_]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1];
    cuu[m_]:=Select[stableSets[Union[Rest[Subsets[m]]],submultisetQ],And[multijoin@@#==m,Length[csm[#]]==1]&];
    Table[Length[Join@@Table[cuu[m],{m,allnorm[n]}]],{n,5}]

A317076 Number of connected antichains of multisets with multiset-join a strongly normal multiset of size n.

Original entry on oeis.org

1, 1, 2, 8, 110, 7047
Offset: 0

Views

Author

Gus Wiseman, Jul 20 2018

Keywords

Comments

An antichain of multisets is a finite set of finite nonempty multisets, none of which is a submultiset of any other. A multiset is strongly normal if it spans an initial interval of positive integers with weakly decreasing multiplicities. The multiset-join of a multiset system has the same vertices with multiplicities equal to the maxima of the multiplicities in the edges.

Examples

			The a(3) = 8 connected antichains of multisets:
  (111),
  (112), (11)(12),
  (123), (13)(23), (12)(23), (12)(13), (12)(13)(23).
		

Crossrefs

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    multijoin[mss__]:=Join@@Table[Table[x,{Max[Count[#,x]&/@{mss}]}],{x,Union[mss]}];
    submultisetQ[M_,N_]:=Or[Length[M]==0,MatchQ[{Sort[List@@M],Sort[List@@N]},{{x_,Z___},{_,x_,W___}}/;submultisetQ[{Z},{W}]]];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],multijoin@@s[[c[[1]]]]]]]]];
    strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
    cuu[m_]:=Select[stableSets[Union[Rest[Subsets[m]]],submultisetQ],And[multijoin@@#==m,Length[csm[#]]==1]&];
    Table[Length[Join@@Table[cuu[m],{m,strnorm[n]}]],{n,5}]

A326365 Number of intersecting antichains with empty intersection (meaning there is no vertex in common to all the edges) covering n vertices.

Original entry on oeis.org

1, 0, 0, 1, 23, 1834, 1367903, 229745722873, 423295077919493525420
Offset: 0

Views

Author

Gus Wiseman, Jul 01 2019

Keywords

Comments

Covering means there are no isolated vertices. A set system (set of sets) is an antichain if no part is a subset of any other, and is intersecting if no two parts are disjoint.

Examples

			The a(4) = 23 intersecting antichains with empty intersection:
  {{1,2},{1,3},{2,3,4}}
  {{1,2},{1,4},{2,3,4}}
  {{1,2},{2,3},{1,3,4}}
  {{1,2},{2,4},{1,3,4}}
  {{1,3},{1,4},{2,3,4}}
  {{1,3},{2,3},{1,2,4}}
  {{1,3},{3,4},{1,2,4}}
  {{1,4},{2,4},{1,2,3}}
  {{1,4},{3,4},{1,2,3}}
  {{2,3},{2,4},{1,3,4}}
  {{2,3},{3,4},{1,2,4}}
  {{2,4},{3,4},{1,2,3}}
  {{1,2},{1,3,4},{2,3,4}}
  {{1,3},{1,2,4},{2,3,4}}
  {{1,4},{1,2,3},{2,3,4}}
  {{2,3},{1,2,4},{1,3,4}}
  {{2,4},{1,2,3},{1,3,4}}
  {{3,4},{1,2,3},{1,2,4}}
  {{1,2},{1,3},{1,4},{2,3,4}}
  {{1,2},{2,3},{2,4},{1,3,4}}
  {{1,3},{2,3},{3,4},{1,2,4}}
  {{1,4},{2,4},{3,4},{1,2,3}}
  {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
		

Crossrefs

Intersecting antichain covers are A305844.
Intersecting covers with empty intersection are A326364.
Antichain covers with empty intersection are A305001.
The binomial transform is the non-covering case A326366.
Covering, intersecting antichains with empty intersection are A326365.

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],Or[Intersection[#1,#2]=={},SubsetQ[#1,#2]]&],And[Union@@#==Range[n],#=={}||Intersection@@#=={}]&]],{n,0,4}]

Extensions

a(7)-a(8) from Andrew Howroyd, Aug 14 2019

A326366 Number of intersecting antichains of nonempty subsets of {1..n} with empty intersection (meaning there is no vertex in common to all the edges).

Original entry on oeis.org

1, 1, 1, 2, 28, 1960, 1379273, 229755337549, 423295079757497714059
Offset: 0

Views

Author

Gus Wiseman, Jul 01 2019

Keywords

Comments

A set system (set of sets) is an antichain if no edge is a subset of any other, and is intersecting if no two edges are disjoint.

Examples

			The a(0) = 1 through a(4) = 28 intersecting antichains with empty intersection:
  {}  {}  {}  {}              {}
              {{12}{13}{23}}  {{12}{13}{23}}
                              {{12}{14}{24}}
                              {{13}{14}{34}}
                              {{23}{24}{34}}
                              {{12}{13}{234}}
                              {{12}{14}{234}}
                              {{12}{23}{134}}
                              {{12}{24}{134}}
                              {{13}{14}{234}}
                              {{13}{23}{124}}
                              {{13}{34}{124}}
                              {{14}{24}{123}}
                              {{14}{34}{123}}
                              {{23}{24}{134}}
                              {{23}{34}{124}}
                              {{24}{34}{123}}
                              {{12}{134}{234}}
                              {{13}{124}{234}}
                              {{14}{123}{234}}
                              {{23}{124}{134}}
                              {{24}{123}{134}}
                              {{34}{123}{124}}
                              {{12}{13}{14}{234}}
                              {{12}{23}{24}{134}}
                              {{13}{23}{34}{124}}
                              {{14}{24}{34}{123}}
                              {{123}{124}{134}{234}}
		

Crossrefs

The case with empty edges allowed is A326375.
Intersecting antichains of nonempty sets are A001206.
Intersecting set systems with empty intersection are A326373.
Antichains of nonempty sets with empty intersection are A006126 or A307249.
The inverse binomial transform is the covering case A326365.

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],Or[Intersection[#1,#2]=={},SubsetQ[#1,#2]]&],#=={}||Intersection@@#=={}&]],{n,0,4}]

Formula

a(n) = A326375(n) - 1.
a(n) = A001206(n+1) + A307249(n) - A014466(n). - Andrew Howroyd, Aug 14 2019

Extensions

a(7)-a(8) from Andrew Howroyd, Aug 14 2019

A305935 Number of labeled spanning intersecting set-systems on n vertices with no singletons.

Original entry on oeis.org

1, 0, 1, 12, 809, 1146800, 899927167353, 291136684655893185321964, 14704020783497694096988185391720223222562121969, 12553242487939982849962414795232892198542733492886483991398790450208264017757788101836749760
Offset: 0

Views

Author

Gus Wiseman, Jun 15 2018

Keywords

Comments

An intersecting set-system S is a finite set of finite nonempty sets (edges), any two of which have a nonempty intersection. S is spanning if every vertex is contained in some edge. A singleton is an edge containing only one vertex.

Examples

			The a(3) = 12 spanning intersecting set-systems with no singletons:
{{1,2,3}}
{{1,2},{1,3}}
{{1,2},{2,3}}
{{1,3},{2,3}}
{{1,2},{1,2,3}}
{{1,3},{1,2,3}}
{{2,3},{1,2,3}}
{{1,2},{1,3},{2,3}}
{{1,2},{1,3},{1,2,3}}
{{1,2},{2,3},{1,2,3}}
{{1,3},{2,3},{1,2,3}}
{{1,2},{1,3},{2,3},{1,2,3}}
		

Crossrefs

Formula

a(n) = A305843(n) - n * A003465(n-1).
Inverse binomial transform of A306000. - Andrew Howroyd, Aug 12 2019

Extensions

a(6)-a(8) from Giovanni Resta, Jun 20 2018
a(9) from Andrew Howroyd, Aug 12 2019

A306000 Number of labeled intersecting set-systems with no singletons covering some subset of {1,...,n}.

Original entry on oeis.org

1, 1, 2, 16, 864, 1150976, 899934060544, 291136684662192699604992, 14704020783497694096990514485197495566069661696, 12553242487939982849962414795232892198542733625222671042878037323112413463887484853594095616
Offset: 0

Views

Author

Gus Wiseman, Jun 16 2018

Keywords

Comments

An intersecting set-system S is a finite set of finite nonempty sets (edges), any two of which have a nonempty intersection. A singleton is an edge containing only one vertex.

Examples

			The a(3) = 16 set-systems:
  {}
  {{1,2}}
  {{1,3}}
  {{2,3}}
  {{1,2,3}}
  {{1,2},{1,3}}
  {{1,2},{2,3}}
  {{1,3},{2,3}}
  {{1,2},{1,2,3}}
  {{1,3},{1,2,3}}
  {{2,3},{1,2,3}}
  {{1,2},{1,3},{2,3}}
  {{1,2},{1,3},{1,2,3}}
  {{1,2},{2,3},{1,2,3}}
  {{1,3},{2,3},{1,2,3}}
  {{1,2},{1,3},{2,3},{1,2,3}}
		

Crossrefs

Formula

a(n) = A051185(n) - n*2^(2^(n-1)-1). - Andrew Howroyd, Aug 12 2019

Extensions

a(6)-a(9) from Andrew Howroyd, Aug 12 2019
Previous Showing 11-20 of 23 results. Next