A338331
Numbers whose set of distinct prime indices (A304038) is pairwise coprime, where a singleton is always considered coprime.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 64, 66, 67, 68, 69, 70, 71, 72, 73
Offset: 1
The sequence of terms together with their prime indices begins:
1: {} 16: {1,1,1,1} 32: {1,1,1,1,1}
2: {1} 17: {7} 33: {2,5}
3: {2} 18: {1,2,2} 34: {1,7}
4: {1,1} 19: {8} 35: {3,4}
5: {3} 20: {1,1,3} 36: {1,1,2,2}
6: {1,2} 22: {1,5} 37: {12}
7: {4} 23: {9} 38: {1,8}
8: {1,1,1} 24: {1,1,1,2} 40: {1,1,1,3}
9: {2,2} 25: {3,3} 41: {13}
10: {1,3} 26: {1,6} 43: {14}
11: {5} 27: {2,2,2} 44: {1,1,5}
12: {1,1,2} 28: {1,1,4} 45: {2,2,3}
13: {6} 29: {10} 46: {1,9}
14: {1,4} 30: {1,2,3} 47: {15}
15: {2,3} 31: {11} 48: {1,1,1,1,2}
A304709 counts partitions with pairwise coprime distinct parts, with ordered version
A337665 and Heinz numbers
A304711.
A304711 does not consider singletons relatively prime, except for (1).
A304712 counts the partitions with these Heinz numbers.
A316476 is the version for indivisibility instead of relative primality.
A328867 is the pairwise non-coprime instead of pairwise coprime version.
A051424 counts pairwise coprime or singleton partitions.
A304038 gives the distinct prime indices of each positive integer.
A327516 counts pairwise coprime partitions.
A333228 ranks compositions whose distinct parts are pairwise coprime.
Cf.
A000837,
A047968,
A056239,
A112798,
A289509,
A302797,
A305148,
A318716,
A318719,
A337664,
A337695.
A371445
Numbers whose distinct prime indices are binary carry-connected and have no binary containments.
Original entry on oeis.org
2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, 41, 43, 47, 49, 53, 55, 59, 61, 64, 65, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 115, 121, 125, 127, 128, 131, 137, 139, 143, 145, 149, 151, 157, 163, 167, 169, 173, 179, 181
Offset: 1
The terms together with their prime indices begin:
2: {1} 37: {12} 97: {25}
3: {2} 41: {13} 101: {26}
4: {1,1} 43: {14} 103: {27}
5: {3} 47: {15} 107: {28}
7: {4} 49: {4,4} 109: {29}
8: {1,1,1} 53: {16} 113: {30}
9: {2,2} 55: {3,5} 115: {3,9}
11: {5} 59: {17} 121: {5,5}
13: {6} 61: {18} 125: {3,3,3}
16: {1,1,1,1} 64: {1,1,1,1,1,1} 127: {31}
17: {7} 65: {3,6} 128: {1,1,1,1,1,1,1}
19: {8} 67: {19} 131: {32}
23: {9} 71: {20} 137: {33}
25: {3,3} 73: {21} 139: {34}
27: {2,2,2} 79: {22} 143: {5,6}
29: {10} 81: {2,2,2,2} 145: {3,10}
31: {11} 83: {23} 149: {35}
32: {1,1,1,1,1} 89: {24} 151: {36}
Contains all powers of primes
A000961 except 1.
Partitions of this type are counted by
A371446.
A007718 counts non-isomorphic connected multiset partitions.
A048143 counts connected antichains of sets.
A070939 gives length of binary expansion.
Cf.
A019565,
A056239,
A112798,
A304713,
A304716,
A305079,
A305148,
A325097,
A325105,
A325107,
A325119,
A371452.
-
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}], Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]], Union@@s[[c[[1]]]]]]]]];
Select[Range[100],stableQ[bpe/@prix[#],SubsetQ] && Length[csm[bpe/@prix[#]]]==1&]
A319728
Number of strict T_0 integer partitions of n.
Original entry on oeis.org
1, 1, 1, 2, 2, 3, 3, 4, 6, 8, 9, 10, 14, 16, 19, 25, 31, 34, 41, 49, 59, 72, 81, 94, 113, 133, 152, 179, 209, 239, 273, 315, 366, 422, 478, 548, 627, 711, 812, 926, 1051, 1185, 1340, 1514, 1718, 1945, 2179, 2444, 2757, 3095, 3465, 3892, 4362, 4865, 5427, 6068
Offset: 0
The a(11) = 10 integer partitions are (11), (7,4), (8,3), (9,2), (5,4,2), (6,3,2), (6,4,1), (7,3,1), (8,2,1), (5,3,2,1). Missing from this list are (6,5) and (10,1).
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}]
Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&UnsameQ@@dual[primeMS/@#]&]],{n,60}]
A371446
Number of carry-connected integer partitions whose distinct parts have no binary containments.
Original entry on oeis.org
1, 1, 2, 2, 3, 2, 4, 2, 5, 4, 4, 4, 8, 4, 7, 7, 12, 10, 14, 12, 15, 19, 19, 21, 32, 27, 33, 40, 46, 47, 61, 52, 75, 89, 95, 104, 129, 129, 149, 176, 188, 208, 249, 257, 296, 341, 373, 394, 476, 496, 552
Offset: 0
The a(12) = 8 through a(14) = 7 partitions:
(12) (13) (14)
(6,6) (10,3) (7,7)
(9,3) (5,5,3) (9,5)
(4,4,4) (1,1,1,1,1,1,1,1,1,1,1,1,1) (6,5,3)
(6,3,3) (5,3,3,3)
(3,3,3,3) (2,2,2,2,2,2,2)
(2,2,2,2,2,2) (1,1,1,1,1,1,1,1,1,1,1,1,1,1)
(1,1,1,1,1,1,1,1,1,1,1,1)
The first condition (carry-connected) is
A325098.
The second condition (stable) is
A325109.
A007718 counts non-isomorphic connected multiset partitions.
A048143 counts connected antichains of sets.
A070939 gives length of binary expansion.
-
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}], Length[Intersection@@s[[#]]]>0&]},If[c=={},s, csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
Table[Length[Select[IntegerPartitions[n], stableQ[bix/@Union[#],SubsetQ]&&Length[csm[bix/@#]]<=1&]],{n,0,30}]
A323053
Number of integer partitions of n with no 1's such that no part is a power of any other (unequal) part.
Original entry on oeis.org
1, 0, 1, 1, 2, 2, 3, 4, 6, 7, 9, 12, 15, 19, 25, 30, 38, 47, 58, 71, 87, 106, 131, 156, 190, 228, 275, 328, 394, 468, 556, 661, 784, 923, 1089, 1283, 1507, 1766, 2068, 2416, 2821, 3284, 3822, 4438, 5148, 5961, 6898, 7968, 9195, 10593, 12198, 14019, 16102, 18472
Offset: 0
The a(2) = 1 through a(11) = 12 integer partitions (A = 10, B = 11):
(2) (3) (4) (5) (6) (7) (8) (9) (A) (B)
(22) (32) (33) (43) (44) (54) (55) (65)
(222) (52) (53) (63) (64) (74)
(322) (62) (72) (73) (83)
(332) (333) (433) (92)
(2222) (522) (532) (443)
(3222) (622) (533)
(3322) (632)
(22222) (722)
(3332)
(5222)
(32222)
Cf.
A001597,
A002865,
A007916,
A052410,
A101417,
A102430,
A108917,
A305148,
A305630,
A305631,
A321346,
A323093.
-
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
Table[Length[Select[IntegerPartitions[n],And[FreeQ[#,1],stableQ[#,IntegerQ[Log[#1,#2]]&]]&]],{n,30}]
A328676
Number of relatively prime integer partitions of n whose distinct parts are pairwise indivisible.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 4, 3, 5, 5, 11, 7, 16, 14, 18, 22, 34, 30, 47, 45, 59, 66, 89, 90, 118, 125, 159, 169, 218, 225, 289, 304, 369, 400, 486, 520, 636, 680, 806, 873, 1051, 1105, 1333, 1424, 1664, 1803, 2122, 2253, 2659, 2841, 3283, 3560, 4118, 4388, 5096
Offset: 1
The a(4) = 1 through a(11) = 11 partitions:
1111 32 111111 43 53 54 73 65
11111 52 332 72 433 74
322 11111111 522 532 83
1111111 3222 3322 92
111111111 1111111111 443
533
722
3332
5222
32222
11111111111
The Heinz numbers of these partitions are given by
A328677.
The binary index version is
A328671.
Relatively prime partitions are
A000837.
Partitions whose distinct parts are pairwise indivisible are
A305148.
-
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
Table[Length[Select[IntegerPartitions[n],GCD@@#==1&&stableQ[#,Divisible]&]],{n,30}]
A371179
Positive integers with fewer distinct prime factors (A001221) than distinct divisors of prime indices (A370820).
Original entry on oeis.org
3, 5, 7, 9, 11, 13, 14, 15, 17, 19, 21, 23, 25, 26, 27, 28, 29, 31, 33, 35, 37, 38, 39, 41, 43, 45, 46, 47, 49, 51, 52, 53, 55, 56, 57, 58, 59, 61, 63, 65, 67, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 81, 83, 85, 86, 87, 89, 91, 92, 93, 94, 95, 97, 98, 99, 101
Offset: 1
The terms together with their prime indices begin:
3: {2} 28: {1,1,4} 52: {1,1,6} 74: {1,12}
5: {3} 29: {10} 53: {16} 75: {2,3,3}
7: {4} 31: {11} 55: {3,5} 76: {1,1,8}
9: {2,2} 33: {2,5} 56: {1,1,1,4} 77: {4,5}
11: {5} 35: {3,4} 57: {2,8} 78: {1,2,6}
13: {6} 37: {12} 58: {1,10} 79: {22}
14: {1,4} 38: {1,8} 59: {17} 81: {2,2,2,2}
15: {2,3} 39: {2,6} 61: {18} 83: {23}
17: {7} 41: {13} 63: {2,2,4} 85: {3,7}
19: {8} 43: {14} 65: {3,6} 86: {1,14}
21: {2,4} 45: {2,2,3} 67: {19} 87: {2,10}
23: {9} 46: {1,9} 69: {2,9} 89: {24}
25: {3,3} 47: {15} 70: {1,3,4} 91: {4,6}
26: {1,6} 49: {4,4} 71: {20} 92: {1,1,9}
27: {2,2,2} 51: {2,7} 73: {21} 93: {2,11}
Counting all prime indices on the LHS gives
A371168, counted by
A371173.
A008284 counts partitions by length.
A305148 counts pairwise indivisible (stable) partitions, ranks
A316476.
A371455
Numbers k such that if we take the binary indices of each prime index of k we get an antichain of sets.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 21, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 35, 36, 37, 38, 41, 42, 43, 47, 48, 49, 52, 53, 54, 55, 56, 57, 58, 59, 61, 63, 64, 65, 67, 69, 71, 72, 73, 74, 76, 79, 81, 83, 84, 86, 89, 95, 96, 97, 98, 99
Offset: 1
The prime indices of 65 are {3,6} with binary indices {{1,2},{2,3}} so 65 is in the sequence.
The prime indices of 255 are {2,3,7} with binary indices {{2},{1,2},{1,2,3}} so 255 is not in the sequence.
Contains all powers of primes
A000961.
For prime indices of prime indices we have
A316476, carry-connected
A329559.
These antichains are counted by
A325109.
For binary indices of binary indices we have
A326704, carry-conn.
A326750.
A048143 counts connected antichains of sets.
A050320 counts set multipartitions of prime indices, see also
A318360.
A070939 gives length of binary expansion.
A089259 counts set multipartitions of integer partitions.
A116540 counts normal set multipartitions.
A371451 counts carry-connected components of binary indices.
-
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],stableQ[bix/@prix[#],SubsetQ]&]
A326082
Number of maximal sets of pairwise indivisible divisors of n.
Original entry on oeis.org
1, 2, 2, 3, 2, 3, 2, 4, 3, 3, 2, 5, 2, 3, 3, 5, 2, 5, 2, 5, 3, 3, 2, 8, 3, 3, 4, 5, 2, 7, 2, 6, 3, 3, 3, 9, 2, 3, 3, 8, 2, 7, 2, 5, 5, 3, 2, 12, 3, 5, 3, 5, 2, 8, 3, 8, 3, 3, 2, 15, 2, 3, 5, 7, 3, 7, 2, 5, 3, 7, 2, 15, 2, 3, 5, 5, 3, 7, 2, 12, 5, 3, 2, 15, 3
Offset: 1
The maximal sets of pairwise indivisible divisors of n = 1, 2, 4, 8, 12, 24, 30, 32, 36, 48, 60 are:
1 1 1 1 1 1 1 1 1 1 1
2 2 2 12 24 30 2 36 48 60
4 4 2,3 2,3 5,6 4 2,3 2,3 2,15
8 3,4 3,4 2,15 8 2,9 3,4 3,20
4,6 3,8 3,10 16 3,4 3,8 4,30
4,6 2,3,5 32 4,18 4,6 5,12
6,8 6,10,15 9,12 6,8 2,3,5
8,12 12,18 3,16 3,4,5
4,6,9 6,16 4,5,6
8,12 3,4,10
12,16 6,15,20
16,24 10,12,15
12,15,20
12,20,30
4,6,10,15
Cf.
A001055,
A051026,
A067992,
A096827,
A143824,
A285572,
A285573,
A303362,
A305148,
A305149,
A316476,
A325861,
A326023,
A326077.
-
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)];
Table[Length[fasmax[Select[Rest[Subsets[Divisors[n]]],stableQ[#,Divisible]&]]],{n,100}]
A328675
Number of integer partitions of n with no two distinct consecutive parts divisible.
Original entry on oeis.org
1, 1, 2, 2, 3, 3, 4, 5, 6, 8, 9, 13, 13, 22, 23, 30, 36, 50, 54, 77, 85, 113, 135, 170, 194, 256, 303, 369, 440, 545, 640, 792, 931, 1132, 1347, 1616, 1909, 2295, 2712, 3225, 3799, 4519, 5310, 6278, 7365, 8675, 10170, 11928, 13940, 16314, 19046, 22223, 25856
Offset: 0
The a(1) = 1 through a(10) = 9 partitions (A = 10).
1 2 3 4 5 6 7 8 9 A
11 111 22 32 33 43 44 54 55
1111 11111 222 52 53 72 64
111111 322 332 333 73
1111111 2222 432 433
11111111 522 532
3222 3322
111111111 22222
1111111111
The Heinz numbers of these partitions are given by
A328674.
The case involving all consecutive parts (not just distinct) is
A328171.
The version for relative primality instead of divisibility is
A328187.
Partitions with all consecutive parts divisible are
A003238.
Compositions without consecutive divisibilities are
A328460.
-
Table[Length[Select[IntegerPartitions[n],!MatchQ[Union[#],{_,x_,y_,_}/;Divisible[y,x]]&]],{n,0,30}]
Comments