cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 58 results. Next

A306019 Number of non-isomorphic set-systems of weight n in which all parts have the same size.

Original entry on oeis.org

1, 1, 2, 2, 4, 2, 10, 2, 17, 14, 33, 2, 167, 2, 186, 491, 785, 2, 5839, 2, 11123, 53454, 15229, 2, 1102924, 53537, 193382, 16334183, 12411062, 2, 382413555, 2, 993814248, 9763321547, 53394774, 1778595972, 402119882757, 2, 1111261718, 9674133468473, 16955983996383
Offset: 0

Views

Author

Gus Wiseman, Jun 17 2018

Keywords

Comments

A set-system of weight n is a finite set of finite nonempty sets whose sizes sum to n.

Examples

			Non-isomorphic representatives of the a(6) = 10 set-systems:
{{1,2,3,4,5,6}}
{{1,2,3},{4,5,6}}
{{1,2,5},{3,4,5}}
{{1,3,4},{2,3,4}}
{{1,2},{1,3},{2,3}}
{{1,2},{3,4},{5,6}}
{{1,2},{3,5},{4,5}}
{{1,3},{2,4},{3,4}}
{{1,4},{2,4},{3,4}}
{{1},{2},{3},{4},{5},{6}}
		

Crossrefs

Programs

  • PARI
    \\ See A331508 for T(n,k).
    a(n) = {if(n==0, 1, sumdiv(n, d, if(d==1 || d==n, 1, T(n/d, d))))} \\ Andrew Howroyd, Jan 16 2024

Formula

a(p) = 2 for prime p. - Andrew Howroyd, Aug 29 2019
a(n) = Sum_{d|n} A331508(n/d, d) for n > 0. - Andrew Howroyd, Jan 16 2024

Extensions

Terms a(12) and beyond from Andrew Howroyd, Sep 01 2019

A306018 Number of non-isomorphic set multipartitions of weight n in which all parts have the same size.

Original entry on oeis.org

1, 1, 3, 4, 9, 8, 24, 16, 51, 47, 115, 57, 420, 102, 830, 879, 2962, 298, 15527, 491, 41275, 80481, 133292, 1256, 2038182, 58671, 2386862, 24061887, 23570088, 4566, 600731285, 6843, 1303320380, 14138926716, 1182784693, 1820343112, 542834549721, 21638, 31525806080
Offset: 0

Views

Author

Gus Wiseman, Jun 17 2018

Keywords

Comments

A set multipartition of weight n is a finite multiset of finite nonempty sets whose cardinalities sum to n.
Number of distinct binary matrices with all row sums equal and total sum n, up to row and column permutations. - Andrew Howroyd, Sep 05 2018

Examples

			Non-isomorphic representatives of the a(6) = 24 set multipartitions in which all parts have the same size:
{{1,2,3,4,5,6}}
{{1,2,3},{1,2,3}}
{{1,2,3},{4,5,6}}
{{1,2,5},{3,4,5}}
{{1,3,4},{2,3,4}}
{{1,2},{1,2},{1,2}}
{{1,2},{1,3},{2,3}}
{{1,2},{3,4},{3,4}}
{{1,2},{3,4},{5,6}}
{{1,2},{3,5},{4,5}}
{{1,3},{2,3},{2,3}}
{{1,3},{2,4},{3,4}}
{{1,4},{2,4},{3,4}}
{{1},{1},{1},{1},{1},{1}}
{{1},{1},{1},{2},{2},{2}}
{{1},{1},{2},{2},{2},{2}}
{{1},{1},{2},{2},{3},{3}}
{{1},{2},{2},{2},{2},{2}}
{{1},{2},{2},{3},{3},{3}}
{{1},{2},{3},{3},{3},{3}}
{{1},{2},{3},{3},{4},{4}}
{{1},{2},{3},{4},{4},{4}}
{{1},{2},{3},{4},{5},{5}}
{{1},{2},{3},{4},{5},{6}}
		

Crossrefs

Programs

Formula

a(p) = A000041(p) + 1 for prime p. - Andrew Howroyd, Sep 06 2018
a(n) = Sum_{d|n} A331461(n/d, d). - Andrew Howroyd, Feb 09 2020

Extensions

Terms a(11) and beyond from Andrew Howroyd, Sep 05 2018

A306020 a(n) is the number of set-systems using nonempty subsets of {1,...,n} in which all sets have the same size.

Original entry on oeis.org

1, 2, 5, 16, 95, 2110, 1114237, 68723671292, 1180735735906024030715, 170141183460507917357914971986913657850, 7237005577335553223087828975127304179197147198604070555943173844710572689401
Offset: 0

Views

Author

Gus Wiseman, Jun 17 2018

Keywords

Comments

A058673(n) <= a(n). - Lorenzo Sauras Altuzarra, Aug 10 2023

Examples

			a(3) = 16 set-systems in which all sets have the same size:
  {}
  {{1}}
  {{2}}
  {{3}}
  {{1,2}}
  {{1,3}}
  {{2,3}}
  {{1,2,3}}
  {{1},{2}}
  {{1},{3}}
  {{2},{3}}
  {{1,2},{1,3}}
  {{1,2},{2,3}}
  {{1,3},{2,3}}
  {{1},{2},{3}}
  {{1,2},{1,3},{2,3}}
		

Crossrefs

Programs

  • Maple
    a := n -> 1-n+add(2^binomial(n, d), d = 1 .. n):
    seq(a(n), n = 0 .. 10); # Lorenzo Sauras Altuzarra, Aug 11 2023
  • Mathematica
    Table[1+Sum[2^Binomial[n,d]-1,{d,n}],{n,10}]
  • PARI
    a(n) = 1 - n + sum(d = 1, n, 2^binomial(n, d)); \\ Michel Marcus, Aug 10 2023

Formula

a(n) = 1 - n + Sum_{d = 1..n} 2^binomial(n, d).

A318951 Array read by rows: T(n,k) is the number of nonisomorphic n X n matrices with nonnegative integer entries and row sums k under row and column permutations, (n >= 1, k >= 0).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 6, 14, 5, 1, 1, 9, 44, 53, 7, 1, 1, 12, 129, 458, 198, 11, 1, 1, 16, 316, 3411, 5929, 782, 15, 1, 1, 20, 714, 19865, 145168, 96073, 3111, 22, 1, 1, 25, 1452, 95214, 2459994, 9283247, 1863594, 12789, 30, 1, 1, 30, 2775, 383714, 30170387, 537001197, 833593500, 42430061, 53836, 42, 1
Offset: 1

Views

Author

Andrew Howroyd, Sep 05 2018

Keywords

Examples

			Array begins:
================================================================
n\k| 0  1    2       3         4            5              6
---|------------------------------------------------------------
1  | 1  1    1       1         1            1              1 ...
2  | 1  2    4       6         9           12             16 ...
3  | 1  3   14      44       129          316            714 ...
4  | 1  5   53     458      3411        19865          95214 ...
5  | 1  7  198    5929    145168      2459994       30170387 ...
6  | 1 11  782   96073   9283247    537001197    19578605324 ...
7  | 1 15 3111 1863594 833593500 189076534322 23361610029905 ...
...
		

Crossrefs

Rows 2..6 are A002620(n+2), A058389, A058390, A058391, A058392.

Programs

  • Mathematica
    permcount[v_List] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    K[q_List, t_, k_] := SeriesCoefficient[1/Product[g = GCD[t, q[[j]]]; (1 - x^(q[[j]]/g))^g, {j, 1, Length[q]}], {x, 0, k}];
    RowSumMats[n_, m_, k_] := Module[{s = 0}, Do[s += permcount[q]* SeriesCoefficient[Exp[Sum[K[q, t, k]/t*x^t, {t, 1, n}]], {x, 0, n}], {q, IntegerPartitions[m]}]; s/m!];
    Table[RowSumMats[n-k, n-k, k], {n, 1, 11}, {k, n-1, 0, -1}] // Flatten (* Jean-François Alcover, Sep 12 2018, after Andrew Howroyd *)
  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    K(q, t, k)={polcoeff(1/prod(j=1, #q, my(g=gcd(t, q[j])); (1 - x^(q[j]/g) + O(x*x^k))^g), k)}
    RowSumMats(n, m, k)={my(s=0); forpart(q=m, s+=permcount(q)*polcoeff(exp(sum(t=1, n, K(q, t, k)/t*x^t) + O(x*x^n)), n)); s/m!}
    for(n=1, 8, for(k=0, 6, print1(RowSumMats(n, n, k), ", ")); print)

A326783 BII-numbers of uniform set-systems.

Original entry on oeis.org

0, 1, 2, 3, 4, 8, 9, 10, 11, 16, 20, 32, 36, 48, 52, 64, 128, 129, 130, 131, 136, 137, 138, 139, 256, 260, 272, 276, 288, 292, 304, 308, 512, 516, 528, 532, 544, 548, 560, 564, 768, 772, 784, 788, 800, 804, 816, 820, 1024, 1088, 2048, 2052, 2064, 2068, 2080
Offset: 1

Views

Author

Gus Wiseman, Jul 25 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. A set-system is uniform if all edges have the same size.
Alternatively, these are numbers whose binary indices all have the same binary weight, where the binary weight of a nonnegative integer is the numbers of 1's in its binary digits.

Examples

			The sequence of all uniform set-systems together with their BII-numbers begins:
    0: {}
    1: {{1}}
    2: {{2}}
    3: {{1},{2}}
    4: {{1,2}}
    8: {{3}}
    9: {{1},{3}}
   10: {{2},{3}}
   11: {{1},{2},{3}}
   16: {{1,3}}
   20: {{1,2},{1,3}}
   32: {{2,3}}
   36: {{1,2},{2,3}}
   48: {{1,3},{2,3}}
   52: {{1,2},{1,3},{2,3}}
   64: {{1,2,3}}
  128: {{4}}
  129: {{1},{4}}
  130: {{2},{4}}
  131: {{1},{2},{4}}
		

Crossrefs

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[0,100],SameQ@@Length/@bpe/@bpe[#]&]

A306319 Number of length-rectangular twice-partitions of n.

Original entry on oeis.org

1, 1, 3, 5, 10, 14, 26, 35, 60, 82, 131, 177, 286, 376, 582, 793, 1202, 1610, 2450, 3274, 4906, 6665, 9770, 13274, 19690, 26506, 38596, 53006, 76432, 104189, 150844, 205282, 294304, 404146, 573140, 786169, 1119457, 1527554, 2155953, 2965567, 4163955, 5701816
Offset: 0

Views

Author

Gus Wiseman, Feb 07 2019

Keywords

Comments

A twice partition of n is a sequence of integer partitions, one of each part in an integer partition of n. It is length-rectangular if all parts have the same number of parts.

Examples

			The a(5) = 14 length-rectangular twice-partitions:
  [5] [4 1] [3 2] [3 1 1] [2 2 1] [2 1 1 1] [1 1 1 1 1]
.
  [4] [3] [2 1]
  [1] [2] [1 1]
.
  [3] [2]
  [1] [2]
  [1] [1]
.
  [2]
  [1]
  [1]
  [1]
.
  [1]
  [1]
  [1]
  [1]
  [1]
		

Crossrefs

Dominates A319066 (rectangular partitions of partitions), which dominates A323429 (rectangular plane partitions).
Cf. A000219, A001970, A063834 (twice-partitions), A089299, A271619, A279787 (sum-rectangular twice-partitions), A305551, A306017, A306318 (square case), A323531.

Programs

  • Mathematica
    Table[Length[Join@@Table[Select[Tuples[IntegerPartitions/@ptn],SameQ@@Length/@#&],{ptn,IntegerPartitions[n]}]],{n,20}]

A331485 Array read by antidiagonals: A(n,k) is the number of nonequivalent nonnegative integer matrices with k columns and any number of nonzero rows with column sums n up to permutation of rows and columns.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 7, 3, 1, 1, 5, 23, 21, 5, 1, 1, 7, 79, 162, 66, 7, 1, 1, 11, 274, 1636, 1338, 192, 11, 1, 1, 15, 1003, 19977, 43686, 10585, 565, 15, 1, 1, 22, 3763, 298416, 2142277, 1178221, 82694, 1579, 22, 1, 1, 30, 14723, 5300296, 149056260, 232984145, 30370346, 612700, 4348, 30, 1
Offset: 0

Views

Author

Andrew Howroyd, Jan 18 2020

Keywords

Comments

A(n,k) is the number of non-isomorphic multiset partitions (multisets of multisets) with k parts each of size n.

Examples

			Array begins:
============================================================
n\k | 0  1   2     3        4           5              6
----+-------------------------------------------------------
  0 | 1  1   1     1        1           1              1 ...
  1 | 1  1   2     3        5           7             11 ...
  2 | 1  2   7    23       79         274           1003 ...
  3 | 1  3  21   162     1636       19977         298416 ...
  4 | 1  5  66  1338    43686     2142277      149056260 ...
  5 | 1  7 192 10585  1178221   232984145    74676589469 ...
  6 | 1 11 565 82694 30370346 23412296767 33463656939910 ...
  ...
The A(2,2) = 7 matrices are:
  [1 0]  [2 0]  [1 1]  [2 1]  [2 0]  [1 1]  [2 2]
  [1 0]  [0 1]  [1 0]  [0 1]  [0 2]  [1 1]
  [0 1]  [0 1]  [0 1]
  [0 1]
		

Crossrefs

Programs

  • PARI
    \\ See A318951 for RowSumMats
    T(n, k)={RowSumMats(k, n*k, n)}
    { for(n=0, 7, for(k=0, 6, print1(T(n, k), ", ")); print) }

Formula

A306017(n) = Sum_{d|n} A(n/d, d).

A323774 Number of multiset partitions, whose parts are constant and all have the same sum, of integer partitions of n.

Original entry on oeis.org

1, 1, 3, 3, 7, 3, 12, 3, 16, 8, 14, 3, 39, 3, 16, 15, 40, 3, 50, 3, 54, 17, 20, 3, 135, 10, 22, 25, 73, 3, 129, 3, 119, 21, 26, 19, 273, 3, 28, 23, 217, 3, 203, 3, 123, 74, 32, 3, 590, 12, 106, 27, 154, 3, 370, 23, 343, 29, 38, 3, 963, 3, 40, 95, 450, 25, 467, 3
Offset: 0

Views

Author

Gus Wiseman, Jan 27 2019

Keywords

Comments

An unlabeled version of A279789.

Examples

			The a(1) = 1 through a(6) = 12 multiset partitions:
  (1)  (2)     (3)        (4)           (5)              (6)
       (11)    (111)      (22)          (11111)          (33)
       (1)(1)  (1)(1)(1)  (1111)        (1)(1)(1)(1)(1)  (222)
                          (2)(2)                         (3)(3)
                          (2)(11)                        (111111)
                          (11)(11)                       (3)(111)
                          (1)(1)(1)(1)                   (2)(2)(2)
                                                         (111)(111)
                                                         (2)(2)(11)
                                                         (2)(11)(11)
                                                         (11)(11)(11)
                                                         (1)(1)(1)(1)(1)(1)
		

Crossrefs

Cf. A001970, A006171 (constant parts), A007716, A034729, A047966 (uniform partitions), A047968, A279787, A279789 (twice-partitions version), A305551 (equal part-sums), A306017, A319056, A323766, A323775, A323776.

Programs

  • Mathematica
    Table[Length[Join@@Table[Union[Sort/@Tuples[Select[IntegerPartitions[#],SameQ@@#&]&/@ptn]],{ptn,Select[IntegerPartitions[n],SameQ@@#&]}]],{n,30}]
  • PARI
    a(n) = if (n==0, 1, sumdiv(n, d, binomial(numdiv(d) + n/d - 1, n/d))); \\ Michel Marcus, Jan 28 2019

Formula

a(0) = 1; a(n) = Sum_{d|n} binomial(tau(d) + n/d - 1, n/d), where tau = A000005.

A326026 Number of non-isomorphic multiset partitions of weight n where each part has a different length.

Original entry on oeis.org

1, 1, 2, 7, 12, 35, 111, 247, 624, 1843, 6717, 15020, 46847, 124808, 412577, 1658973, 4217546, 12997734, 40786810, 126971940, 437063393, 2106317043, 5499108365, 19037901867, 59939925812, 210338815573, 683526043801, 2741350650705, 14848209030691, 41533835240731, 151548411269815
Offset: 0

Views

Author

Gus Wiseman, Jul 13 2019

Keywords

Comments

The number of non-isomorphic multiset partitions of weight n is A007716(n).

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(4) = 12 multiset partitions:
  {{1}}  {{1,1}}  {{1,1,1}}    {{1,1,1,1}}
         {{1,2}}  {{1,2,2}}    {{1,1,2,2}}
                  {{1,2,3}}    {{1,2,2,2}}
                  {{1},{1,1}}  {{1,2,3,3}}
                  {{1},{2,2}}  {{1,2,3,4}}
                  {{1},{2,3}}  {{1},{1,1,1}}
                  {{2},{1,2}}  {{1},{1,2,2}}
                               {{1},{2,2,2}}
                               {{1},{2,3,3}}
                               {{1},{2,3,4}}
                               {{2},{1,2,2}}
                               {{3},{1,2,3}}
		

Crossrefs

Programs

  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    D(p,n)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); my(u=EulerT(v)); polcoef(prod(k=1, #u, 1 + u[k]*x^k + O(x*x^n)), n)/prod(i=1, #v, i^v[i]*v[i]!)}
    a(n)={my(s=0); forpart(p=n, s+=D(p,n)); s} \\ Andrew Howroyd, Feb 08 2020

Extensions

Terms a(11) and beyond from Andrew Howroyd, Feb 08 2020

A301481 Number of unlabeled uniform hypergraphs spanning n vertices.

Original entry on oeis.org

1, 1, 2, 4, 12, 58, 2381, 14026281, 29284932065996445, 468863491068204425232922367150021, 1994324729204021501147398087008429476673379600542622915802043462326345
Offset: 0

Views

Author

Gus Wiseman, Jun 19 2018

Keywords

Comments

A hypergraph is uniform if all edges have the same size.

Examples

			Non-isomorphic representatives of the a(4) = 12 hypergraphs:
  {{1,2,3,4}}
  {{1,2},{3,4}}
  {{1},{2},{3},{4}}
  {{1,3,4},{2,3,4}}
  {{1,3},{2,4},{3,4}}
  {{1,4},{2,4},{3,4}}
  {{1,2,4},{1,3,4},{2,3,4}}
  {{1,2},{1,3},{2,4},{3,4}}
  {{1,4},{2,3},{2,4},{3,4}}
  {{1,3},{1,4},{2,3},{2,4},{3,4}}
  {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
  {{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}}
		

Crossrefs

Programs

  • PARI
    \\ see A301922 for U(n,k).
    a(n)={ if(n==0, 1, sum(k=1, n, U(n,k)-U(n-1,k))) } \\ Andrew Howroyd, Aug 10 2019

Extensions

Terms a(6) and beyond from Andrew Howroyd, Aug 09 2019
Previous Showing 21-30 of 58 results. Next