A323776
a(n) = Sum_{k = 1...n} binomial(k + 2^(n - k) - 1, k - 1).
Original entry on oeis.org
1, 3, 7, 16, 40, 119, 450, 2253, 15207, 139190, 1731703, 29335875, 677864041, 21400069232, 924419728471, 54716596051100, 4443400439075834, 495676372493566749, 76041424515817042402, 16060385520094706930608, 4674665948889147697184915
Offset: 1
The a(1) = 1 through a(4) = 16 partitions of partitions:
(1) (2) (4) (8)
(11) (22) (44)
(1)(1) (1111) (2222)
(2)(2) (4)(4)
(2)(11) (4)(22)
(11)(11) (22)(22)
(1)(1)(1)(1) (4)(1111)
(11111111)
(22)(1111)
(1111)(1111)
(2)(2)(2)(2)
(2)(2)(2)(11)
(2)(2)(11)(11)
(2)(11)(11)(11)
(11)(11)(11)(11)
(1)(1)(1)(1)(1)(1)(1)(1)
Cf.
A000123,
A001970,
A002577,
A006171,
A007716,
A034729,
A047968,
A279787,
A279789,
A305551,
A306017,
A319056,
A323766,
A323774,
A323775.
-
Table[Sum[Binomial[k+2^(n-k)-1,k-1],{k,n}],{n,20}]
-
a(n) = sum(k=1, n, binomial(k+2^(n-k)-1, k-1)); \\ Michel Marcus, Jan 28 2019
A327900
Nonprime squarefree numbers whose prime indices all have the same Omega (number of prime factors counted with multiplicity).
Original entry on oeis.org
1, 15, 33, 51, 55, 85, 91, 93, 123, 155, 161, 165, 177, 187, 201, 203, 205, 249, 255, 295, 299, 301, 327, 329, 335, 341, 377, 381, 415, 451, 465, 471, 511, 527, 537, 545, 553, 559, 561, 573, 611, 615, 633, 635, 649, 667, 679, 697, 703, 707, 723, 737, 785, 831
Offset: 1
The sequence of terms together with their prime indices begins:
1: {}
15: {2,3}
33: {2,5}
51: {2,7}
55: {3,5}
85: {3,7}
91: {4,6}
93: {2,11}
123: {2,13}
155: {3,11}
161: {4,9}
165: {2,3,5}
177: {2,17}
187: {5,7}
201: {2,19}
203: {4,10}
205: {3,13}
249: {2,23}
255: {2,3,7}
295: {3,17}
The case including primes and nonsquarefree numbers is
A320324.
The version for sum of prime indices is
A327901.
The version for mean of prime indices is
A327902.
Cf.
A001222,
A038041,
A056239,
A078175,
A112798,
A306017,
A306021,
A316413,
A317583,
A322794,
A327908.
A320323
Numbers whose product of prime indices (A003963) is a perfect power and where each prime index has the same number of prime factors, counted with multiplicity.
Original entry on oeis.org
7, 9, 19, 23, 25, 27, 49, 53, 81, 97, 103, 121, 125, 131, 151, 161, 169, 225, 227, 243, 289, 311, 343, 361, 419, 529, 541, 625, 661, 679, 691, 719, 729, 827, 841, 961, 1009, 1089, 1127, 1159, 1183, 1193, 1321, 1331, 1369, 1427, 1543, 1589, 1619, 1681, 1849
Offset: 1
The terms together with their corresponding multiset multisystems (A302242):
7: {{1,1}}
9: {{1},{1}}
19: {{1,1,1}}
23: {{2,2}}
25: {{2},{2}}
27: {{1},{1},{1}}
49: {{1,1},{1,1}}
53: {{1,1,1,1}}
81: {{1},{1},{1},{1}}
97: {{3,3}}
103: {{2,2,2}}
121: {{3},{3}}
125: {{2},{2},{2}}
131: {{1,1,1,1,1}}
151: {{1,1,2,2}}
161: {{1,1},{2,2}}
169: {{1,2},{1,2}}
225: {{1},{1},{2},{2}}
Cf.
A000720,
A001222,
A003963,
A056239,
A064573,
A112798,
A302242,
A305551,
A306017,
A319056,
A319066,
A319071,
A320324,
A320325.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],And[GCD@@FactorInteger[Times@@primeMS[#]][[All,2]]>1,SameQ@@PrimeOmega/@primeMS[#]]&]
-
is(n) = my (f=factor(n), pi=apply(primepi, f[,1]~)); #Set(apply(bigomega, pi))==1 && ispower(prod(i=1, #pi, pi[i]^f[i,2])) \\ Rémy Sigrist, Oct 11 2018
A323775
a(n) = Sum_{k = 1...n} k^(2^(n - k)).
Original entry on oeis.org
1, 3, 8, 30, 359, 72385, 4338080222, 18448597098193762732, 340282370354622283774333836315916425069, 115792089237316207213755562747271079374483128445080168204415615259394085515423
Offset: 1
The a(1) = 1 through a(4) = 30 twice-partitions:
(1) (2) (4) (8)
(11) (22) (44)
(1)(1) (1111) (2222)
(2)(2) (4)(4)
(11)(2) (22)(4)
(2)(11) (4)(22)
(11)(11) (22)(22)
(1)(1)(1)(1) (1111)(4)
(4)(1111)
(11111111)
(1111)(22)
(22)(1111)
(1111)(1111)
(2)(2)(2)(2)
(11)(2)(2)(2)
(2)(11)(2)(2)
(2)(2)(11)(2)
(2)(2)(2)(11)
(11)(11)(2)(2)
(11)(2)(11)(2)
(11)(2)(2)(11)
(2)(11)(11)(2)
(2)(11)(2)(11)
(2)(2)(11)(11)
(11)(11)(11)(2)
(11)(11)(2)(11)
(11)(2)(11)(11)
(2)(11)(11)(11)
(11)(11)(11)(11)
(1)(1)(1)(1)(1)(1)(1)(1)
Cf.
A000123,
A001970,
A002577,
A006171,
A279787,
A279789,
A305551,
A306017,
A319056,
A323766,
A323774,
A323776.
-
Table[Sum[k^2^(n-k),{k,n}],{n,12}]
A003190
Number of connected 2-plexes.
Original entry on oeis.org
1, 0, 1, 3, 29, 2101, 7011181, 1788775603301, 53304526022885278403, 366299663378889804782330207902, 1171638318502622784366970315262493034215728, 3517726593606524901243694560022510194169866584119717555335
Offset: 1
From _Gus Wiseman_, Feb 23 2019: (Start)
Non-isomorphic representatives of the a(5) = 29 2-plexes:
{{125}{345}}
{{123}{245}{345}}
{{135}{245}{345}}
{{145}{245}{345}}
{{123}{145}{245}{345}}
{{124}{135}{245}{345}}
{{125}{135}{245}{345}}
{{134}{235}{245}{345}}
{{145}{235}{245}{345}}
{{123}{124}{135}{245}{345}}
{{123}{145}{235}{245}{345}}
{{124}{134}{235}{245}{345}}
{{134}{145}{235}{245}{345}}
{{135}{145}{235}{245}{345}}
{{145}{234}{235}{245}{345}}
{{123}{124}{134}{235}{245}{345}}
{{123}{134}{145}{235}{245}{345}}
{{123}{145}{234}{235}{245}{345}}
{{124}{135}{145}{235}{245}{345}}
{{125}{135}{145}{235}{245}{345}}
{{135}{145}{234}{235}{245}{345}}
{{123}{124}{135}{145}{235}{245}{345}}
{{124}{135}{145}{234}{235}{245}{345}}
{{125}{135}{145}{234}{235}{245}{345}}
{{134}{135}{145}{234}{235}{245}{345}}
{{123}{124}{135}{145}{234}{235}{245}{345}}
{{125}{134}{135}{145}{234}{235}{245}{345}}
{{124}{125}{134}{135}{145}{234}{235}{245}{345}}
{{123}{124}{125}{134}{135}{145}{234}{235}{245}{345}}
(End)
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Cf.
A000665 (unlabeled 3-uniform),
A025035,
A125791 (labeled 3-uniform),
A289837,
A301922,
A302374 (labeled 3-uniform spanning),
A302394,
A306017,
A319540,
A320395,
A322451 (unlabeled 3-uniform spanning),
A323292-
A323299.
A322555
Number of labeled simple graphs on n vertices where all non-isolated vertices have the same degree.
Original entry on oeis.org
1, 1, 2, 5, 18, 69, 390, 2703, 59474, 1548349, 168926258, 12165065351, 7074423247562, 2294426405580191, 4218009215702391954, 3810376434461484994317, 35102248193591661086921250, 156873334244228518638713087133, 4144940994226400702145709978234154
Offset: 0
The a(4) = 18 edge sets:
{}
{{1,2}}
{{1,3}}
{{1,4}}
{{2,3}}
{{2,4}}
{{3,4}}
{{1,2},{3,4}}
{{1,3},{2,4}}
{{1,4},{2,3}}
{{1,2},{1,3},{2,3}}
{{1,2},{1,4},{2,4}}
{{1,3},{1,4},{3,4}}
{{2,3},{2,4},{3,4}}
{{1,2},{1,3},{2,4},{3,4}}
{{1,2},{1,4},{2,3},{3,4}}
{{1,3},{1,4},{2,3},{2,4}}
{{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}}
-
Table[Length[Select[Subsets[Subsets[Range[n],{2}]],SameQ@@Length/@Split[Sort[Join@@#]]&]],{n,6}]
A359041
Number of finite sets of integer partitions with all equal sums and total sum n.
Original entry on oeis.org
1, 1, 2, 3, 6, 7, 14, 15, 32, 31, 63, 56, 142, 101, 240, 211, 467, 297, 985, 490, 1524, 1247, 2542, 1255, 6371, 1979, 7486, 7070, 14128, 4565, 32953, 6842, 42229, 37863, 56266, 17887, 192914, 21637, 145820, 197835, 371853, 44583, 772740, 63261, 943966, 1124840
Offset: 0
The a(1) = 1 through a(6) = 14 sets:
{(1)} {(2)} {(3)} {(4)} {(5)} {(6)}
{(11)} {(21)} {(22)} {(32)} {(33)}
{(111)} {(31)} {(41)} {(42)}
{(211)} {(221)} {(51)}
{(1111)} {(311)} {(222)}
{(2),(11)} {(2111)} {(321)}
{(11111)} {(411)}
{(2211)}
{(3111)}
{(21111)}
{(111111)}
{(3),(21)}
{(3),(111)}
{(21),(111)}
The version for compositions instead of partitions is
A358904.
A001970 counts multisets of partitions.
-
Table[If[n==0,1,Sum[Binomial[PartitionsP[d],n/d],{d,Divisors[n]}]],{n,0,50}]
-
a(n) = if (n, sumdiv(n, d, binomial(numbpart(d), n/d)), 1); \\ Michel Marcus, Dec 14 2022
A381872
Number of multisets that can be obtained by taking the sum of each block of a multiset partition of the prime indices of n into blocks having a common sum.
Original entry on oeis.org
1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1
Offset: 1
The prime indices of 144 are {1,1,1,1,2,2}, with the following 4 multiset partitions having common block sum:
{{1,1,1,1,2,2}}
{{2,2},{1,1,1,1}}
{{1,1,2},{1,1,2}}
{{2},{2},{1,1},{1,1}}
with sums: 8, 4, 4, 2, of which 3 are distinct, so a(144) = 3.
The prime indices of 1296 are {1,1,1,1,2,2,2,2}, with the following 7 multiset partitions having common block sum:
{{1,1,1,1,2,2,2,2}}
{{2,2,2},{1,1,1,1,2}}
{{1,1,2,2},{1,1,2,2}}
{{2,2},{2,2},{1,1,1,1}}
{{2,2},{1,1,2},{1,1,2}}
{{1,2},{1,2},{1,2},{1,2}}
{{2},{2},{2},{2},{1,1},{1,1}}
with sums: 12, 6, 6, 4, 4, 3, 2, of which 5 are distinct, so a(1296) = 5.
With equal blocks instead of sums we have
A089723.
Positions of terms > 1 are
A321454.
With distinct instead of equal sums we have
A381637, before sums
A321469.
A265947 counts refinement-ordered pairs of integer partitions.
Other multiset partitions of prime indices:
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[mset_]:=Union[Sort[Sort/@(#/.x_Integer:>mset[[x]])]&/@sps[Range[Length[mset]]]];
Table[Length[Union[Sort[Total/@#]&/@Select[mps[prix[n]],SameQ@@Total/@#&]]],{n,100}]
Comments