cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 61 results. Next

A361848 Number of integer partitions of n such that (maximum) <= 2*(median).

Original entry on oeis.org

1, 2, 3, 5, 6, 9, 12, 15, 19, 26, 31, 40, 49, 61, 75, 93, 112, 137, 165, 199, 238, 289, 341, 408, 482, 571, 674, 796, 932, 1096, 1280, 1495, 1738, 2026, 2347, 2724, 3148, 3639, 4191, 4831, 5545, 6372, 7298, 8358, 9552, 10915, 12439, 14176, 16121, 18325
Offset: 0

Views

Author

Gus Wiseman, Mar 28 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The a(1) = 1 through a(7) = 12 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)
       (11)  (21)   (22)    (32)     (33)      (43)
             (111)  (31)    (41)     (42)      (52)
                    (211)   (221)    (51)      (61)
                    (1111)  (2111)   (222)     (322)
                            (11111)  (321)     (331)
                                     (2211)    (421)
                                     (21111)   (2221)
                                     (111111)  (3211)
                                               (22111)
                                               (211111)
                                               (1111111)
For example, the partition y = (3,2,2) has maximum 3 and median 2, and 3 <= 2*2, so y is counted under a(7).
		

Crossrefs

For length instead of median we have A237755.
For minimum instead of median we have A237824.
The equal case is A361849, ranks A361856.
For mean instead of median we have A361851.
The complement is counted by A361857, ranks A361867.
The unequal case is A361858.
Reversing the inequality gives A361859, ranks A361868.
A000041 counts integer partitions, strict A000009.
A000975 counts subsets with integer median.
A325347 counts partitions with integer median, complement A307683.
A359893 and A359901 count partitions by median.
A360005 gives twice median of prime indices, distinct A360457.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Max@@#<=2*Median[#]&]],{n,30}]

Formula

a(n) = A361849(n) + A361858(n).
a(n) = A000041(n) - A361857(n).

A237821 Number of partitions of n such that 2*(least part) <= greatest part.

Original entry on oeis.org

0, 0, 1, 2, 4, 7, 11, 16, 25, 35, 48, 68, 92, 123, 164, 216, 282, 367, 471, 604, 769, 975, 1225, 1542, 1924, 2395, 2968, 3669, 4514, 5547, 6781, 8280, 10071, 12229, 14796, 17881, 21537, 25902, 31066, 37206, 44443, 53021, 63098, 74995, 88946, 105350, 124533
Offset: 1

Views

Author

Clark Kimberling, Feb 16 2014

Keywords

Comments

By conjugation, also the number of integer partitions of n with different median from maximum, ranks A362980. - Gus Wiseman, May 15 2023

Examples

			a(6) = 7 counts these partitions:  51, 42, 411, 321, 3111, 2211, 21111.
From _Gus Wiseman_, May 15 2023: (Start)
The a(3) = 1 through a(8) = 16 partitions wirth 2*(least part) <= greatest part:
  (21)  (31)   (41)    (42)     (52)
        (211)  (221)   (51)     (61)
               (311)   (321)    (331)
               (2111)  (411)    (421)
                       (2211)   (511)
                       (3111)   (2221)
                       (21111)  (3211)
                                (4111)
                                (22111)
                                (31111)
                                (211111)
The a(3) = 1 through a(8) = 16 partitions with different median from maximum:
  (21)  (31)   (32)    (42)     (43)
        (211)  (41)    (51)     (52)
               (311)   (321)    (61)
               (2111)  (411)    (322)
                       (2211)   (421)
                       (3111)   (511)
                       (21111)  (3211)
                                (4111)
                                (22111)
                                (31111)
                                (211111)
(End)
		

Crossrefs

The complement is counted by A053263, ranks A081306.
These partitions have ranks A069900.
The case of equality is A118096.
For < instead of <= we have A237820, ranks A362982.
For >= instead of <= we have A237824, ranks A362981.
The conjugate partitions have ranks A362980.
A000041 counts integer partitions, strict A000009.
A325347 counts partitions with integer median, complement A307683.

Programs

  • Mathematica
    z = 60; q[n_] := q[n] = IntegerPartitions[n];
    Table[Count[q[n], p_ /; 2 Min[p] < Max[p]], {n, z}]  (* A237820 *)
    Table[Count[q[n], p_ /; 2 Min[p] <= Max[p]], {n, z}] (* A237821 *)
    Table[Count[q[n], p_ /; 2 Min[p] = = Max[p]], {n, z}](* A118096 *)
    Table[Count[q[n], p_ /; 2 Min[p] > Max[p]], {n, z}]  (* A053263 *)
    Table[Count[q[n], p_ /; 2 Min[p] >= Max[p]], {n, z}] (* A237824 *)

Formula

G.f.: Sum_{i>=1} Sum_{j>=0} x^(3*i+j) /Product_{k=i..2*i+j} (1-x^k). - Seiichi Manyama, May 27 2023

A360460 Two times the median of the unordered prime signature of n; a(1) = 1.

Original entry on oeis.org

1, 2, 2, 4, 2, 2, 2, 6, 4, 2, 2, 3, 2, 2, 2, 8, 2, 3, 2, 3, 2, 2, 2, 4, 4, 2, 6, 3, 2, 2, 2, 10, 2, 2, 2, 4, 2, 2, 2, 4, 2, 2, 2, 3, 3, 2, 2, 5, 4, 3, 2, 3, 2, 4, 2, 4, 2, 2, 2, 2, 2, 2, 3, 12, 2, 2, 2, 3, 2, 2, 2, 5, 2, 2, 3, 3, 2, 2, 2, 5, 8, 2, 2, 2, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Feb 14 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length). Since the denominator is always 1 or 2, the median can be represented as an integer by multiplying by 2.
A number's unordered prime signature (row n of A118914) is the multiset of positive exponents in its prime factorization.

Examples

			The unordered prime signature of 2520 is {1,1,2,3}, with median 3/2, so a(2520) = 3.
		

Crossrefs

The version for divisors is A063655.
For mean instead of two times median we have A088529/A088530.
Prime signature is A124010, unordered A118914.
The version for prime indices is A360005.
The version for distinct prime indices is A360457.
The version for distinct prime factors is A360458.
The version for prime factors is A360459.
Positions of even terms are A360553.
Positions of odd terms are A360554.
The version for 0-prepended differences is A360555.
A112798 lists prime indices, length A001222, sum A056239.
A304038 lists distinct prime indices.
A325347 counts partitions w/ integer median, complement A307683.
A329976 counts partitions with median multiplicity 1.
A359893 and A359901 count partitions by median, odd-length A359902.

Programs

  • Mathematica
    Table[If[n==1,1,2*Median[Last/@FactorInteger[n]]],{n,100}]

A360459 Two times the median of the multiset of prime factors of n; a(1) = 2.

Original entry on oeis.org

2, 4, 6, 4, 10, 5, 14, 4, 6, 7, 22, 4, 26, 9, 8, 4, 34, 6, 38, 4, 10, 13, 46, 4, 10, 15, 6, 4, 58, 6, 62, 4, 14, 19, 12, 5, 74, 21, 16, 4, 82, 6, 86, 4, 6, 25, 94, 4, 14, 10, 20, 4, 106, 6, 16, 4, 22, 31, 118, 5, 122, 33, 6, 4, 18, 6, 134, 4, 26, 10, 142, 4, 146
Offset: 1

Views

Author

Gus Wiseman, Feb 14 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length). Since the denominator is always 1 or 2, the median can be represented as an integer by multiplying by 2.

Examples

			The prime factors of 60 are {2,2,3,5}, with median 5/2, so a(60) = 5.
		

Crossrefs

The union is 2 followed by A014091, complement of A014092.
The prime factors themselves are listed by A027746, distinct A027748.
The version for divisors is A063655.
Positions of odd terms are A072978 (except 1).
For mean instead of twice median: A123528/A123529, distinct A323171/A323172.
Positions of even terms are A359913 (and 1).
The version for prime indices is A360005.
The version for distinct prime indices is A360457.
The version for distinct prime factors is A360458.
The version for prime multiplicities is A360460.
The version for 0-prepended differences is A360555.
A112798 lists prime indices, length A001222, sum A056239.
A325347 counts partitions with integer median, complement A307683.
A326567/A326568 gives mean of prime indices.
A359893 and A359901 count partitions by median, odd-length A359902.

Programs

  • Mathematica
    Table[2*Median[Join@@ConstantArray@@@FactorInteger[n]],{n,100}]

A360551 Numbers > 1 whose distinct prime indices have non-integer median.

Original entry on oeis.org

6, 12, 14, 15, 18, 24, 26, 28, 33, 35, 36, 38, 45, 48, 51, 52, 54, 56, 58, 65, 69, 72, 74, 75, 76, 77, 86, 93, 95, 96, 98, 99, 104, 106, 108, 112, 116, 119, 122, 123, 135, 141, 142, 143, 144, 145, 148, 152, 153, 158, 161, 162, 172, 175, 177, 178, 185, 192, 196
Offset: 1

Views

Author

Gus Wiseman, Feb 16 2023

Keywords

Comments

First differs from A325700 in having 330 and lacking 462.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. Distinct prime indices are listed by A304038.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The prime indices of 900 are {1,1,2,2,3,3}, with distinct parts {1,2,3}, with median 2, so 900 is not in the sequence.
The prime indices of 462 are {1,2,4,5}, with distinct parts {1,2,4,5}, with median 3, so 462 is not in the sequence.
		

Crossrefs

For mean instead of median we have the complement of A326621.
Positions of odd terms in A360457.
The complement (without 1) is A360550, counted by A360686.
- For divisors (A063655) we have A139710, complement A139711.
- For prime indices (A360005) we have A359912, complement A359908.
- For distinct prime indices (A360457) we have A360551 complement A360550.
- For distinct prime factors (A360458) we have A100367, complement A360552.
- For prime factors (A360459) we have A072978, complement A359913.
- For prime multiplicities (A360460) we have A360554, complement A360553.
- For 0-prepended differences (A360555) we have A360557, complement A360556.
A112798 lists prime indices, length A001222, sum A056239.
A304038 lists distinct prime indices, length A001221, sum A066328.
A325347 = partitions w/ integer median, complement A307683, strict A359907.
A326619/A326620 gives mean of distinct prime indices.
A359893 and A359901 count partitions by median, odd-length A359902.

Programs

  • Mathematica
    Select[Range[2,100],!IntegerQ[Median[PrimePi/@First/@FactorInteger[#]]]&]

A360554 Numbers > 1 whose unordered prime signature has non-integer median.

Original entry on oeis.org

12, 18, 20, 28, 44, 45, 48, 50, 52, 63, 68, 72, 75, 76, 80, 92, 98, 99, 108, 112, 116, 117, 124, 147, 148, 153, 162, 164, 171, 172, 175, 176, 188, 192, 200, 207, 208, 212, 236, 242, 244, 245, 261, 268, 272, 275, 279, 284, 288, 292, 304, 316, 320, 325, 332, 333
Offset: 1

Views

Author

Gus Wiseman, Feb 16 2023

Keywords

Comments

First differs from A187039 in having 2520 and lacking 1 and 12600.
A number's unordered prime signature (row n of A118914) is the multiset of positive exponents in its prime factorization.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The unordered prime signature of 2520 is {3,2,1,1}, with median 3/2, so 2520 is in the sequence.
The unordered prime signature of 12600 is {3,2,2,1}, with median 2, so 12600 is not in the sequence.
		

Crossrefs

A subset of A030231.
For mean instead of median we have A070011.
Positions of odd terms in A360460.
The complement is A360553 (without 1), counted by A360687.
- For divisors (A063655) we have A139710, complement A139711.
- For prime indices (A360005) we have A359912, complement A359908.
- For distinct prime indices (A360457) we have A360551 complement A360550.
- For distinct prime factors (A360458) we have A100367, complement A360552.
- For prime factors (A360459) we have A072978, complement A359913.
- For prime multiplicities (A360460) we have A360554, complement A360553.
- For 0-prepended differences (A360555) we have A360557, complement A360556.
A112798 lists prime indices, length A001222, sum A056239.
A325347 = partitions w/ integer median, complement A307683, strict A359907.
A326619/A326620 gives mean of distinct prime indices.
A359893 and A359901 count partitions by median, odd-length A359902.

Programs

  • Mathematica
    Select[Range[2,100],!IntegerQ[Median[Last/@FactorInteger[#]]]&]

A360557 Numbers > 1 whose sorted first differences of 0-prepended prime indices have non-integer median.

Original entry on oeis.org

4, 10, 15, 22, 24, 25, 33, 34, 36, 40, 46, 51, 54, 55, 56, 62, 69, 77, 82, 85, 88, 93, 94, 100, 104, 115, 118, 119, 121, 123, 134, 135, 136, 141, 146, 152, 155, 161, 166, 177, 184, 187, 194, 196, 201, 205, 206, 217, 218, 219, 220, 221, 225, 232, 235, 240, 248
Offset: 1

Views

Author

Gus Wiseman, Feb 17 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The 0-prepended prime indices of 1617 are {0,2,4,4,5}, with sorted differences {0,1,2,2}, with median 3/2, so 1617 is in the sequence.
		

Crossrefs

For mean instead of median complement we have A340610, counted by A168659.
For mean instead of median we have A360668, counted by A200727.
Positions of odd terms in A360555.
The complement is A360556 (without 1), counted by A360688.
These partitions are counted by A360691.
- For divisors (A063655) we have A139710, complement A139711.
- For prime indices (A360005) we have A359912, complement A359908.
- For distinct prime indices (A360457) we have A360551, complement A360550.
- For distinct prime factors (A360458) we have A100367, complement A360552.
- For prime factors (A360459) we have A072978, complement A359913.
- For prime multiplicities (A360460) we have A360554, complement A360553.
- For 0-prepended differences (A360555) we have A360557, complement A360556.
A112798 lists prime indices, length A001222, sum A056239.
A287352 lists 0-prepended first differences of prime indices.
A325347 counts partitions with integer median, complement A307683.
A355536 lists first differences of prime indices.
A359893 and A359901 count partitions by median, odd-length A359902.
A360614/A360615 = mean of first differences of 0-prepended prime indices.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[2,100],!IntegerQ[Median[Differences[Prepend[prix[#],0]]]]&]

A361858 Number of integer partitions of n such that the maximum is less than twice the median.

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 8, 12, 15, 19, 22, 31, 34, 45, 55, 67, 78, 100, 115, 144, 170, 203, 238, 291, 337, 403, 473, 560, 650, 772, 889, 1046, 1213, 1414, 1635, 1906, 2186, 2533, 2913, 3361, 3847, 4433, 5060, 5808, 6628, 7572, 8615, 9835, 11158, 12698, 14394
Offset: 1

Views

Author

Gus Wiseman, Apr 02 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The a(1) = 1 through a(8) = 12 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (21)   (22)    (32)     (33)      (43)       (44)
             (111)  (31)    (41)     (42)      (52)       (53)
                    (1111)  (221)    (51)      (61)       (62)
                            (11111)  (222)     (322)      (71)
                                     (321)     (331)      (332)
                                     (2211)    (2221)     (431)
                                     (111111)  (1111111)  (2222)
                                                          (3221)
                                                          (3311)
                                                          (22211)
                                                          (11111111)
The partition y = (3,2,2,1) has maximum 3 and median 2, and 3 < 2*2, so y is counted under a(8).
		

Crossrefs

For minimum instead of median we have A053263.
For length instead of median we have A237754.
Allowing equality gives A361848, strict A361850.
The equal version is A361849, ranks A361856.
For mean instead of median we have A361852.
Reversing the inequality gives A361857, ranks A361867.
The complement is counted by A361859, ranks A361868.
A000041 counts integer partitions, strict A000009.
A000975 counts subsets with integer median.
A325347 counts partitions with integer median, complement A307683.
A359893 and A359901 count partitions by median.
A360005 gives twice median of prime indices, distinct A360457.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Max@@#<2*Median[#]&]],{n,30}]

A361860 Number of integer partitions of n whose median part is the smallest.

Original entry on oeis.org

1, 2, 2, 4, 4, 7, 8, 12, 15, 21, 25, 36, 44, 58, 72, 95, 117, 150, 185, 235, 289, 362, 441, 550, 670, 824, 1000, 1223, 1476, 1795, 2159, 2609, 3126, 3758, 4485, 5369, 6388, 7609, 9021, 10709, 12654, 14966, 17632, 20782, 24414, 28684, 33601, 39364, 45996
Offset: 1

Views

Author

Gus Wiseman, Apr 02 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The a(1) = 1 through a(8) = 12 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (111)  (22)    (311)    (33)      (322)      (44)
                    (211)   (2111)   (222)     (511)      (422)
                    (1111)  (11111)  (411)     (4111)     (611)
                                     (3111)    (22111)    (2222)
                                     (21111)   (31111)    (5111)
                                     (111111)  (211111)   (32111)
                                               (1111111)  (41111)
                                                          (221111)
                                                          (311111)
                                                          (2111111)
                                                          (11111111)
		

Crossrefs

For mean instead of median we have A000005.
For length instead of median we have A006141.
For maximum instead of median we have A053263.
For half-median we have A361861.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, A058398 by mean.
A325347 counts partitions with integer median, complement A307683.
A359893 and A359901 count partitions by median, odd-length A359902.
A360005 gives twice median of prime indices, distinct A360457.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Min@@#==Median[#]&]],{n,30}]

A360007 Positions of first appearances in the sequence giving the median of the prime indices of n (A360005(n)/2).

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 11, 13, 14, 17, 19, 23, 26, 29, 31, 37, 38, 41, 43, 47, 53, 58, 59, 61, 67, 71, 73, 74, 79, 83, 86, 89, 97, 101, 103, 106, 107, 109, 113, 122, 127, 131, 137, 139, 142, 149, 151, 157, 158, 163, 167, 173, 178, 179, 181, 191, 193, 197, 199, 202
Offset: 1

Views

Author

Gus Wiseman, Jan 24 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Crossrefs

Positions of first appearances in A360005.
The unsorted version is A360006.
For mean instead of median we have A360008.
A112798 lists prime indices, length A001222, sum A056239.
A316413 lists numbers whose prime indices have integer mean.
A325347 = partitions w/ integer median, strict A359907, complement A307683.
A326567/A326568 gives mean of prime indices.
A359893 counts partitions by median, cf. A359901, A359902.
A359908 = numbers w/ integer median of prime indices, complement A359912.

Programs

  • Mathematica
    nn=1000;
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    seq=Table[If[n==1,1,2*Median[prix[n]]],{n,nn}];
    Select[Range[nn],FreeQ[seq[[Range[#-1]]],seq[[#]]]&]

Formula

Consists of 1, the primes, and all odd-indexed primes times 2.
Previous Showing 21-30 of 61 results. Next