cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 24 results. Next

A330665 Number of balanced reduced multisystems of maximal depth whose atoms are the prime indices of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 5, 1, 1, 1, 2, 1, 3, 1, 5, 1, 1, 1, 7, 1, 1, 1, 5, 1, 3, 1, 2, 2, 1, 1, 16, 1, 2, 1, 2, 1, 5, 1, 5, 1, 1, 1, 11, 1, 1, 2, 16, 1, 3, 1, 2, 1, 3, 1, 27, 1, 1, 2, 2, 1, 3, 1, 16, 2, 1, 1, 11, 1
Offset: 1

Views

Author

Gus Wiseman, Dec 27 2019

Keywords

Comments

First differs from A317145 at a(32) = 5, A317145(32) = 4.
A balanced reduced multisystem is either a finite multiset, or a multiset partition with at least two parts, not all of which are singletons, of a balanced reduced multisystem.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also series/singleton-reduced factorizations of n with Omega(n) levels of parentheses. See A001055, A050336, A050338, A050340, etc.

Examples

			The a(n) multisystems for n = 2, 6, 12, 24, 48:
  {1}  {1,2}  {{1},{1,2}}  {{{1}},{{1},{1,2}}}  {{{{1}}},{{{1}},{{1},{1,2}}}}
              {{2},{1,1}}  {{{1,1}},{{1},{2}}}  {{{{1}}},{{{1,1}},{{1},{2}}}}
                           {{{1}},{{2},{1,1}}}  {{{{1},{1}}},{{{1}},{{1,2}}}}
                           {{{1,2}},{{1},{1}}}  {{{{1},{1,1}}},{{{1}},{{2}}}}
                           {{{2}},{{1},{1,1}}}  {{{{1,1}}},{{{1}},{{1},{2}}}}
                                                {{{{1}}},{{{1}},{{2},{1,1}}}}
                                                {{{{1}}},{{{1,2}},{{1},{1}}}}
                                                {{{{1},{1}}},{{{2}},{{1,1}}}}
                                                {{{{1},{1,2}}},{{{1}},{{1}}}}
                                                {{{{1,1}}},{{{2}},{{1},{1}}}}
                                                {{{{1}}},{{{2}},{{1},{1,1}}}}
                                                {{{{1},{2}}},{{{1}},{{1,1}}}}
                                                {{{{1,2}}},{{{1}},{{1},{1}}}}
                                                {{{{2}}},{{{1}},{{1},{1,1}}}}
                                                {{{{2}}},{{{1,1}},{{1},{1}}}}
                                                {{{{2},{1,1}}},{{{1}},{{1}}}}
		

Crossrefs

The last nonzero term in row n of A330667 is a(n).
The chain version is A317145.
The non-maximal version is A318812.
Unlabeled versions are A330664 and A330663.
Other labeled versions are A330675 (strongly normal) and A330676 (normal).

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    totm[m_]:=Prepend[Join@@Table[totm[p],{p,Select[mps[m],1
    				

Formula

a(2^n) = A000111(n - 1).
a(product of n distinct primes) = A006472(n).

A321468 Number of factorizations of n! into factors > 1 that can be obtained by taking the multiset union of a choice of factorizations of each positive integer from 2 to n into factors > 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 4, 4, 10, 20, 40, 40, 116, 116, 232, 464, 1440, 1440, 4192, 4192, 11640, 23280, 46560, 46560, 157376
Offset: 0

Views

Author

Gus Wiseman, Nov 11 2018

Keywords

Comments

a(n) is the number of factorizations finer than (2*3*...*n) in the poset of factorizations of n! into factors > 1, ordered by refinement.

Examples

			The a(2) = 1 through a(8) = 10 factorizations:
2  2*3  2*3*4    2*3*4*5    2*3*4*5*6      2*3*4*5*6*7      2*3*4*5*6*7*8
        2*2*2*3  2*2*2*3*5  2*2*2*3*5*6    2*2*2*3*5*6*7    2*2*2*3*5*6*7*8
                            2*2*3*3*4*5    2*2*3*3*4*5*7    2*2*3*3*4*5*7*8
                            2*2*2*2*3*3*5  2*2*2*2*3*3*5*7  2*2*3*4*4*5*6*7
                                                            2*2*2*2*3*3*5*7*8
                                                            2*2*2*2*3*4*5*6*7
                                                            2*2*2*3*3*4*4*5*7
                                                            2*2*2*2*2*2*3*5*6*7
                                                            2*2*2*2*2*3*3*4*5*7
                                                            2*2*2*2*2*2*2*3*3*5*7
For example, 2*2*2*2*2*2*3*5*6*7 = (2)*(3)*(2*2)*(5)*(6)*(7)*(2*2*2), so (2*2*2*2*2*2*3*5*6*7) is counted under a(8).
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Union[Sort/@Join@@@Tuples[facs/@Range[2,n]]]],{n,10}]

A321467 Number of factorizations of n! into factors > 1 that can be obtained by taking the block-products of some set partition of {2,3,...,n}.

Original entry on oeis.org

1, 1, 1, 2, 5, 15, 47, 183, 719, 3329, 14990, 83798, 393864, 2518898
Offset: 0

Views

Author

Gus Wiseman, Nov 11 2018

Keywords

Comments

a(n) is the number of factorizations coarser than (2*3*...*n) in the poset of factorizations of n! into factors > 1, ordered by refinement.

Examples

			The a(1) = 1 through a(5) = 15 factorizations:
  ()  (2)  (6)    (24)     (120)
           (2*3)  (3*8)    (2*60)
                  (4*6)    (3*40)
                  (2*12)   (4*30)
                  (2*3*4)  (5*24)
                           (6*20)
                           (8*15)
                           (10*12)
                           (3*5*8)
                           (4*5*6)
                           (2*3*20)
                           (2*4*15)
                           (2*5*12)
                           (3*4*10)
                           (2*3*4*5)
For example, 10*12 = (2*5)*(3*4), so (10*12) is counted under a(5).
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Length[Union[Sort/@Apply[Times,sps[Range[2,n]],{2}]]],{n,10}]

A321514 Number of ways to choose a factorization of each integer from 2 to n into factors > 1.

Original entry on oeis.org

1, 1, 1, 2, 2, 4, 4, 12, 24, 48, 48, 192, 192, 384, 768, 3840, 3840, 15360, 15360, 61440, 122880, 245760, 245760, 1720320, 3440640, 6881280, 20643840, 82575360, 82575360, 412876800, 412876800, 2890137600, 5780275200, 11560550400, 23121100800, 208089907200
Offset: 1

Views

Author

Gus Wiseman, Nov 11 2018

Keywords

Examples

			The a(8) = 12 ways to choose a factorization of each integer from 2 to 8:
  (2)*(3)*(4)*(5)*(6)*(7)*(8)
  (2)*(3)*(4)*(5)*(6)*(7)*(2*4)
  (2)*(3)*(4)*(5)*(2*3)*(7)*(8)
  (2)*(3)*(2*2)*(5)*(6)*(7)*(8)
  (2)*(3)*(4)*(5)*(6)*(7)*(2*2*2)
  (2)*(3)*(4)*(5)*(2*3)*(7)*(2*4)
  (2)*(3)*(2*2)*(5)*(6)*(7)*(2*4)
  (2)*(3)*(2*2)*(5)*(2*3)*(7)*(8)
  (2)*(3)*(4)*(5)*(2*3)*(7)*(2*2*2)
  (2)*(3)*(2*2)*(5)*(6)*(7)*(2*2*2)
  (2)*(3)*(2*2)*(5)*(2*3)*(7)*(2*4)
  (2)*(3)*(2*2)*(5)*(2*3)*(7)*(2*2*2)
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Array[Length[facs[#]]&,n,1,Times],{n,30}]

Formula

a(n) = Product_{k = 1..n} A001055(k).

A322436 Number of pairs of factorizations of n into factors > 1 where no factor of the second properly divides any factor of the first.

Original entry on oeis.org

1, 1, 1, 3, 1, 3, 1, 5, 3, 3, 1, 8, 1, 3, 3, 11, 1, 8, 1, 8, 3, 3, 1, 18, 3, 3, 5, 8, 1, 12, 1, 15, 3, 3, 3, 31, 1, 3, 3, 18, 1, 12, 1, 8, 8, 3, 1, 39, 3, 8, 3, 8, 1, 18, 3, 18, 3, 3, 1, 42, 1, 3, 8, 33, 3, 12, 1, 8, 3, 12, 1, 67, 1, 3, 8, 8, 3, 12, 1, 39, 11
Offset: 1

Views

Author

Gus Wiseman, Dec 08 2018

Keywords

Examples

			The a(12) = 8 pairs of factorizations:
  (2*2*3)|(2*2*3)
  (2*2*3)|(2*6)
  (2*2*3)|(3*4)
  (2*2*3)|(12)
    (2*6)|(12)
    (3*4)|(3*4)
    (3*4)|(12)
     (12)|(12)
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    divpropQ[x_,y_]:=And[x!=y,Divisible[x,y]];
    Table[Length[Select[Tuples[facs[n],2],!Or@@divpropQ@@@Tuples[#]&]],{n,100}]

A322438 Number of unordered pairs of factorizations of n into factors > 1 where no factor of one properly divides any factor of the other.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 4
Offset: 1

Views

Author

Gus Wiseman, Dec 08 2018

Keywords

Comments

First differs from A322437 at a(144) = 4, A322437(144) = 3.
First differs from A379958 at a(120) = 2, A379958(120) = 1.

Examples

			The a(240) = 5 pairs of factorizations::
  (4*4*15)|(4*6*10)
    (6*40)|(15*16)
    (8*30)|(12*20)
   (10*24)|(15*16)
   (12*20)|(15*16)
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    divpropQ[x_,y_]:=And[x!=y,Divisible[x,y]];
    Table[Length[Select[Subsets[facs[n],{2}],And[!Or@@divpropQ@@@Tuples[#],!Or@@divpropQ@@@Reverse/@Tuples[#]]&]],{n,100}]
  • PARI
    factorizations(n, m=n, f=List([]), z=List([])) = if(1==n, listput(z,Vec(f)); z, my(newf); fordiv(n, d, if((d>1)&&(d<=m), newf = List(f); listput(newf,d); z = factorizations(n/d, d, newf, z))); (z));
    is_proper_ndf_pair(fac1,fac2) = { for(i=1,#fac1,for(j=1,#fac2,if((fac1[i]!=fac2[j]) && (!(fac1[i]%fac2[j]) || !(fac2[j]%fac1[i])),return(0)))); (1); };
    number_of_proper_ndfpairs(z) = sum(i=1,#z,sum(j=i+1,#z,is_proper_ndf_pair(z[i],z[j])));
    A322438(n) = number_of_proper_ndfpairs(Vec(factorizations(n))); \\ Antti Karttunen, Jan 24 2025

Extensions

Data section extended up to a(144) by Antti Karttunen, Jan 24 2025

A322440 Number of pairs of integer partitions of n where every part of the first is less than every part of the second.

Original entry on oeis.org

1, 0, 1, 2, 5, 7, 16, 20, 40, 55, 97, 124, 235, 287, 482, 654, 1033, 1318, 2137, 2676, 4157, 5439, 7891, 10144, 15280, 19171, 27336, 35652, 49756, 63150, 89342, 111956, 154400, 197413, 264572, 336082, 456724, 568932, 756065, 959566, 1261803, 1576355, 2078267
Offset: 0

Views

Author

Gus Wiseman, Dec 08 2018

Keywords

Examples

			The a(5) = 16 pairs of integer partitions:
      (51)|(6)
      (42)|(6)
     (411)|(6)
      (33)|(6)
     (321)|(6)
    (3111)|(6)
     (222)|(6)
     (222)|(33)
    (2211)|(6)
    (2211)|(33)
   (21111)|(6)
   (21111)|(33)
  (111111)|(6)
  (111111)|(42)
  (111111)|(33)
  (111111)|(222)
		

Crossrefs

Programs

  • Maple
    g:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
          g(n, i-1) +g(n-i, min(i, n-i)))
        end:
    b:= proc(n, i) option remember; `if`(n=0, 1,
          `if`(i>n, 0, b(n, i+1)+b(n-i, i)))
        end:
    a:= proc(n) option remember; `if`(n=0, 1,
          add(g(n-i, min(n-i, i))*b(n, i+1), i=1..n))
        end:
    seq(a(n), n=0..50);  # Alois P. Heinz, Dec 09 2018
  • Mathematica
    Table[Length[Select[Tuples[IntegerPartitions[n],2],Max@@First[#]n, 0, b[n, i+1] + b[n-i, i]]];
    a[n_] := a[n] = If[n==0, 1, Sum[g[n-i, Min[n-i, i]]*b[n, i+1], {i, 1, n}]];
    a /@ Range[0, 50] (* Jean-François Alcover, May 10 2021, after Alois P. Heinz *)

Formula

a(n) = Sum_{k=1..n-1} A026820(n, k) * A026794(n, k + 1).

A317146 Moebius function in the ranked poset of factorizations of n into factors > 1, evaluated at the minimum (the prime factorization of n).

Original entry on oeis.org

0, 1, 1, -1, 1, -1, 1, 0, -1, -1, 1, 1, 1, -1, -1, 0, 1, 1, 1, 1, -1, -1, 1, -1, -1, -1, 0, 1, 1, 2, 1, 0, -1, -1, -1, -1, 1, -1, -1, -1, 1, 2, 1, 1, 1, -1, 1, 1, -1, 1, -1, 1, 1, -1, -1, -1, -1, -1, 1, -3, 1, -1, 1, 0, -1, 2, 1, 1, -1, 2, 1, 2, 1, -1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Jul 22 2018

Keywords

Comments

If x and y are factorizations of the same integer and it is possible to produce x by further factoring the factors of y, flattening, and sorting, then x <= y.

Examples

			The factorizations of 60 followed by their Moebius values are the following. The second column sums to 0, as required.
  (2*2*3*5) -> -3
   (2*2*15) ->  1
   (2*3*10) ->  2
    (2*5*6) ->  2
     (2*30) -> -1
    (3*4*5) ->  2
     (3*20) -> -1
     (4*15) -> -1
     (5*12) -> -1
     (6*10) -> -1
       (60) ->  1
		

Crossrefs

Formula

Product_{k>=2} 1/(1-a(n)/n^s) = 1+P(s), Re(s)>1, where P(s) is the prime zeta function. - Tian Vlasic, Jan 25 2024

A317176 Number of chains of factorizations of n into factors > 1, ordered by refinement, starting with the prime factorization of n and ending with the maximum factorization (n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 6, 1, 3, 1, 3, 1, 1, 1, 11, 1, 1, 2, 3, 1, 4, 1, 18, 1, 1, 1, 15, 1, 1, 1, 11, 1, 4, 1, 3, 3, 1, 1, 49, 1, 3, 1, 3, 1, 11, 1, 11, 1, 1, 1, 21, 1, 1, 3, 74, 1, 4, 1, 3, 1, 4, 1, 78, 1, 1, 3, 3, 1, 4, 1, 49, 6, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Jul 23 2018

Keywords

Comments

If x and y are factorizations of the same integer and it is possible to produce x by further factoring the factors of y, flattening, and sorting, then x <= y.

Examples

			The a(24) = 11 chains:
  (2*2*2*3) < (24)
  (2*2*2*3) < (2*12)  < (24)
  (2*2*2*3) < (3*8)   < (24)
  (2*2*2*3) < (4*6)   < (24)
  (2*2*2*3) < (2*2*6) < (24)
  (2*2*2*3) < (2*3*4) < (24)
  (2*2*2*3) < (2*2*6) < (2*12) < (24)
  (2*2*2*3) < (2*2*6) < (4*6)  < (24)
  (2*2*2*3) < (2*3*4) < (2*12) < (24)
  (2*2*2*3) < (2*3*4) < (3*8)  < (24)
  (2*2*2*3) < (2*3*4) < (4*6)  < (24)
		

Crossrefs

Formula

a(prime^n) = A213427(n).

A317534 Numbers k such that the poset of factorizations of k, ordered by refinement, is not a lattice.

Original entry on oeis.org

24, 32, 40, 48, 54, 56, 60, 64, 72, 80, 84, 88, 90, 96, 104, 108, 112, 120, 126, 128, 132, 135, 136, 140, 144, 150, 152, 156, 160, 162, 168, 176, 180, 184, 189, 192, 198, 200, 204, 208, 216, 220, 224, 228, 232, 234, 240, 243, 248, 250, 252, 256, 260, 264, 270
Offset: 1

Views

Author

Gus Wiseman, Jul 30 2018

Keywords

Comments

Includes 2^k for all k > 4.
Conjecture: Let S be the set of all numbers whose prime signature is either {1,3}, {5}, or {1,1,2}. Then the sequence consists of all multiples of elements of S. - David A. Corneth, Jul 31 2018.

Examples

			In the poset of factorizations of 24, the factorizations (2*2*6) and (2*3*4) have two least-upper bounds, namely (2*12) and (4*6), so this poset is not a lattice.
		

References

  • R. P Stanley, Enumerative Combinatorics Vol. 1, Sec. 3.3.

Crossrefs

Previous Showing 11-20 of 24 results. Next