cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A321468 Number of factorizations of n! into factors > 1 that can be obtained by taking the multiset union of a choice of factorizations of each positive integer from 2 to n into factors > 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 4, 4, 10, 20, 40, 40, 116, 116, 232, 464, 1440, 1440, 4192, 4192, 11640, 23280, 46560, 46560, 157376
Offset: 0

Views

Author

Gus Wiseman, Nov 11 2018

Keywords

Comments

a(n) is the number of factorizations finer than (2*3*...*n) in the poset of factorizations of n! into factors > 1, ordered by refinement.

Examples

			The a(2) = 1 through a(8) = 10 factorizations:
2  2*3  2*3*4    2*3*4*5    2*3*4*5*6      2*3*4*5*6*7      2*3*4*5*6*7*8
        2*2*2*3  2*2*2*3*5  2*2*2*3*5*6    2*2*2*3*5*6*7    2*2*2*3*5*6*7*8
                            2*2*3*3*4*5    2*2*3*3*4*5*7    2*2*3*3*4*5*7*8
                            2*2*2*2*3*3*5  2*2*2*2*3*3*5*7  2*2*3*4*4*5*6*7
                                                            2*2*2*2*3*3*5*7*8
                                                            2*2*2*2*3*4*5*6*7
                                                            2*2*2*3*3*4*4*5*7
                                                            2*2*2*2*2*2*3*5*6*7
                                                            2*2*2*2*2*3*3*4*5*7
                                                            2*2*2*2*2*2*2*3*3*5*7
For example, 2*2*2*2*2*2*3*5*6*7 = (2)*(3)*(2*2)*(5)*(6)*(7)*(2*2*2), so (2*2*2*2*2*2*3*5*6*7) is counted under a(8).
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Union[Sort/@Join@@@Tuples[facs/@Range[2,n]]]],{n,10}]

A321467 Number of factorizations of n! into factors > 1 that can be obtained by taking the block-products of some set partition of {2,3,...,n}.

Original entry on oeis.org

1, 1, 1, 2, 5, 15, 47, 183, 719, 3329, 14990, 83798, 393864, 2518898
Offset: 0

Views

Author

Gus Wiseman, Nov 11 2018

Keywords

Comments

a(n) is the number of factorizations coarser than (2*3*...*n) in the poset of factorizations of n! into factors > 1, ordered by refinement.

Examples

			The a(1) = 1 through a(5) = 15 factorizations:
  ()  (2)  (6)    (24)     (120)
           (2*3)  (3*8)    (2*60)
                  (4*6)    (3*40)
                  (2*12)   (4*30)
                  (2*3*4)  (5*24)
                           (6*20)
                           (8*15)
                           (10*12)
                           (3*5*8)
                           (4*5*6)
                           (2*3*20)
                           (2*4*15)
                           (2*5*12)
                           (3*4*10)
                           (2*3*4*5)
For example, 10*12 = (2*5)*(3*4), so (10*12) is counted under a(5).
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Length[Union[Sort/@Apply[Times,sps[Range[2,n]],{2}]]],{n,10}]

A321514 Number of ways to choose a factorization of each integer from 2 to n into factors > 1.

Original entry on oeis.org

1, 1, 1, 2, 2, 4, 4, 12, 24, 48, 48, 192, 192, 384, 768, 3840, 3840, 15360, 15360, 61440, 122880, 245760, 245760, 1720320, 3440640, 6881280, 20643840, 82575360, 82575360, 412876800, 412876800, 2890137600, 5780275200, 11560550400, 23121100800, 208089907200
Offset: 1

Views

Author

Gus Wiseman, Nov 11 2018

Keywords

Examples

			The a(8) = 12 ways to choose a factorization of each integer from 2 to 8:
  (2)*(3)*(4)*(5)*(6)*(7)*(8)
  (2)*(3)*(4)*(5)*(6)*(7)*(2*4)
  (2)*(3)*(4)*(5)*(2*3)*(7)*(8)
  (2)*(3)*(2*2)*(5)*(6)*(7)*(8)
  (2)*(3)*(4)*(5)*(6)*(7)*(2*2*2)
  (2)*(3)*(4)*(5)*(2*3)*(7)*(2*4)
  (2)*(3)*(2*2)*(5)*(6)*(7)*(2*4)
  (2)*(3)*(2*2)*(5)*(2*3)*(7)*(8)
  (2)*(3)*(4)*(5)*(2*3)*(7)*(2*2*2)
  (2)*(3)*(2*2)*(5)*(6)*(7)*(2*2*2)
  (2)*(3)*(2*2)*(5)*(2*3)*(7)*(2*4)
  (2)*(3)*(2*2)*(5)*(2*3)*(7)*(2*2*2)
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Array[Length[facs[#]]&,n,1,Times],{n,30}]

Formula

a(n) = Product_{k = 1..n} A001055(k).

A330728 Number of balanced reduced multisystems of maximum depth whose degrees (atom multiplicities) are the prime indices of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 3, 7, 5, 5, 11, 16, 16, 27, 18, 61, 62, 272, 45, 123, 61, 1385, 105, 152, 272, 501, 211, 7936, 362
Offset: 1

Views

Author

Gus Wiseman, Dec 30 2019

Keywords

Comments

A balanced reduced multisystem is either a finite multiset, or a multiset partition with at least two parts, not all of which are singletons, of a balanced reduced multisystem.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. A multiset whose multiplicities are the prime indices of n (such as row n of A305936) is generally not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.

Examples

			The a(n) multisystems for n = 3, 6, 8, 9, 10, 12 (commas and outer brackets elided):
  11  {1}{12}  {1}{23}  {{1}}{{1}{22}}  {{1}}{{1}{12}}  {{1}}{{1}{23}}
      {2}{11}  {2}{13}  {{11}}{{2}{2}}  {{11}}{{1}{2}}  {{11}}{{2}{3}}
               {3}{12}  {{1}}{{2}{12}}  {{1}}{{2}{11}}  {{1}}{{2}{13}}
                        {{12}}{{1}{2}}  {{12}}{{1}{1}}  {{12}}{{1}{3}}
                        {{2}}{{1}{12}}  {{2}}{{1}{11}}  {{1}}{{3}{12}}
                        {{2}}{{2}{11}}                  {{13}}{{1}{2}}
                        {{22}}{{1}{1}}                  {{2}}{{1}{13}}
                                                        {{2}}{{3}{11}}
                                                        {{23}}{{1}{1}}
                                                        {{3}}{{1}{12}}
                                                        {{3}}{{2}{11}}
		

Crossrefs

The version with distinct atoms is A006472.
The non-maximal version is A318846.
A tree version is A318848, with orderless version A318849.
The unlabeled version is A330664.
Final terms in each row of A330727.
See also A330675 (strongly normal), A330676 (normal), and A330726 (partition).

Programs

  • Mathematica
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[Reverse[FactorInteger[n]],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    totm[m_]:=Prepend[Join@@Table[totm[p],{p,Select[mps[m],1
    				

Formula

a(2^n) = A006472(n).
a(prime(n)) = A000111(n - 1).

A317146 Moebius function in the ranked poset of factorizations of n into factors > 1, evaluated at the minimum (the prime factorization of n).

Original entry on oeis.org

0, 1, 1, -1, 1, -1, 1, 0, -1, -1, 1, 1, 1, -1, -1, 0, 1, 1, 1, 1, -1, -1, 1, -1, -1, -1, 0, 1, 1, 2, 1, 0, -1, -1, -1, -1, 1, -1, -1, -1, 1, 2, 1, 1, 1, -1, 1, 1, -1, 1, -1, 1, 1, -1, -1, -1, -1, -1, 1, -3, 1, -1, 1, 0, -1, 2, 1, 1, -1, 2, 1, 2, 1, -1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Jul 22 2018

Keywords

Comments

If x and y are factorizations of the same integer and it is possible to produce x by further factoring the factors of y, flattening, and sorting, then x <= y.

Examples

			The factorizations of 60 followed by their Moebius values are the following. The second column sums to 0, as required.
  (2*2*3*5) -> -3
   (2*2*15) ->  1
   (2*3*10) ->  2
    (2*5*6) ->  2
     (2*30) -> -1
    (3*4*5) ->  2
     (3*20) -> -1
     (4*15) -> -1
     (5*12) -> -1
     (6*10) -> -1
       (60) ->  1
		

Crossrefs

Formula

Product_{k>=2} 1/(1-a(n)/n^s) = 1+P(s), Re(s)>1, where P(s) is the prime zeta function. - Tian Vlasic, Jan 25 2024

A317176 Number of chains of factorizations of n into factors > 1, ordered by refinement, starting with the prime factorization of n and ending with the maximum factorization (n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 6, 1, 3, 1, 3, 1, 1, 1, 11, 1, 1, 2, 3, 1, 4, 1, 18, 1, 1, 1, 15, 1, 1, 1, 11, 1, 4, 1, 3, 3, 1, 1, 49, 1, 3, 1, 3, 1, 11, 1, 11, 1, 1, 1, 21, 1, 1, 3, 74, 1, 4, 1, 3, 1, 4, 1, 78, 1, 1, 3, 3, 1, 4, 1, 49, 6, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Jul 23 2018

Keywords

Comments

If x and y are factorizations of the same integer and it is possible to produce x by further factoring the factors of y, flattening, and sorting, then x <= y.

Examples

			The a(24) = 11 chains:
  (2*2*2*3) < (24)
  (2*2*2*3) < (2*12)  < (24)
  (2*2*2*3) < (3*8)   < (24)
  (2*2*2*3) < (4*6)   < (24)
  (2*2*2*3) < (2*2*6) < (24)
  (2*2*2*3) < (2*3*4) < (24)
  (2*2*2*3) < (2*2*6) < (2*12) < (24)
  (2*2*2*3) < (2*2*6) < (4*6)  < (24)
  (2*2*2*3) < (2*3*4) < (2*12) < (24)
  (2*2*2*3) < (2*3*4) < (3*8)  < (24)
  (2*2*2*3) < (2*3*4) < (4*6)  < (24)
		

Crossrefs

Formula

a(prime^n) = A213427(n).

A330667 Irregular triangle read by rows where T(n,k) is the number of balanced reduced multisystems of depth k whose atoms are the prime indices of n.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 2, 0, 1, 1, 0, 1, 0, 1, 3, 2, 0, 1, 1, 2, 0, 1, 1, 2, 0, 1, 0, 1, 0, 1, 1, 5, 5, 0, 1, 0, 1, 0, 1, 1, 0, 1, 2, 0, 1, 1, 3, 0, 1, 1, 5, 9, 5, 0, 1, 0, 1, 0, 1, 0, 1, 7, 7, 0, 1, 1, 0, 1, 0, 1, 5, 5, 0, 1, 1, 3
Offset: 1

Views

Author

Gus Wiseman, Dec 27 2019

Keywords

Comments

A balanced reduced multisystem is either a finite multiset, or a multiset partition with at least two parts, not all of which are singletons, of a balanced reduced multisystem.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			Triangle begins:
  {}
  1
  1
  1 0
  1
  1 0
  1
  1 1 0
  1 0
  1 0
  1
  1 2 0
  1
  1 0
  1 0
  1 3 2 0
  1
  1 2 0
  1
  1 2 0
Row n = 84 counts the following multisystems (commas elided):
  {1124}  {{1}{124}}    {{{1}}{{1}{24}}}
          {{11}{24}}    {{{11}}{{2}{4}}}
          {{12}{14}}    {{{1}}{{2}{14}}}
          {{2}{114}}    {{{12}}{{1}{4}}}
          {{4}{112}}    {{{1}}{{4}{12}}}
          {{1}{1}{24}}  {{{14}}{{1}{2}}}
          {{1}{2}{14}}  {{{2}}{{1}{14}}}
          {{1}{4}{12}}  {{{2}}{{4}{11}}}
          {{2}{4}{11}}  {{{24}}{{1}{1}}}
                        {{{4}}{{1}{12}}}
                        {{{4}}{{2}{11}}}
		

Crossrefs

Row lengths are A001222.
Row sums are A318812.
The last nonzero term of row n is A330665(n).
Column k = 2 is 0 if n is prime; otherwise it is A001055(n) - 2.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    totfac[n_,k_]:=If[k==1,1,Sum[totfac[Times@@Prime/@f,k-1],{f,Select[facs[n],1
    				

A317534 Numbers k such that the poset of factorizations of k, ordered by refinement, is not a lattice.

Original entry on oeis.org

24, 32, 40, 48, 54, 56, 60, 64, 72, 80, 84, 88, 90, 96, 104, 108, 112, 120, 126, 128, 132, 135, 136, 140, 144, 150, 152, 156, 160, 162, 168, 176, 180, 184, 189, 192, 198, 200, 204, 208, 216, 220, 224, 228, 232, 234, 240, 243, 248, 250, 252, 256, 260, 264, 270
Offset: 1

Views

Author

Gus Wiseman, Jul 30 2018

Keywords

Comments

Includes 2^k for all k > 4.
Conjecture: Let S be the set of all numbers whose prime signature is either {1,3}, {5}, or {1,1,2}. Then the sequence consists of all multiples of elements of S. - David A. Corneth, Jul 31 2018.

Examples

			In the poset of factorizations of 24, the factorizations (2*2*6) and (2*3*4) have two least-upper bounds, namely (2*12) and (4*6), so this poset is not a lattice.
		

References

  • R. P Stanley, Enumerative Combinatorics Vol. 1, Sec. 3.3.

Crossrefs

A323719 Array read by antidiagonals upwards where A(n, k) is the number of orderless factorizations of n with k - 1 levels of parentheses.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 1, 4, 1, 1, 1, 1, 1, 3, 1, 5, 1, 1, 1, 1, 3, 1, 4, 1, 6, 1, 1, 1, 1, 2, 6, 1, 5, 1, 7, 1, 1, 1, 1, 2, 3, 10, 1, 6, 1, 8, 1, 1, 1, 1, 1, 3, 4, 15, 1, 7, 1, 9, 1, 1, 1, 1, 4, 1, 4, 5, 21, 1, 8, 1, 10, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Jan 25 2019

Keywords

Comments

An orderless factorization of n with k > 1 levels of parentheses is any multiset partition of an orderless factorization of n with k - 1 levels of parentheses. If k = 1 it is just an orderless factorization of n into factors > 1.

Examples

			Array begins:
       k=0  k=1  k=2  k=3  k=4  k=5  k=6  k=7  k=8  k=9  k=10 k=11 k=12
   n=1: 1    1    1    1    1    1    1    1    1    1    1    1    1
   n=2: 1    1    1    1    1    1    1    1    1    1    1    1    1
   n=3: 1    1    1    1    1    1    1    1    1    1    1    1    1
   n=4: 1    2    3    4    5    6    7    8    9   10   11   12   13
   n=5: 1    1    1    1    1    1    1    1    1    1    1    1    1
   n=6: 1    2    3    4    5    6    7    8    9   10   11   12   13
   n=7: 1    1    1    1    1    1    1    1    1    1    1    1    1
   n=8: 1    3    6   10   15   21   28   36   45   55   66   78   91
   n=9: 1    2    3    4    5    6    7    8    9   10   11   12   13
  n=10: 1    2    3    4    5    6    7    8    9   10   11   12   13
  n=11: 1    1    1    1    1    1    1    1    1    1    1    1    1
  n=12: 1    4    9   16   25   36   49   64   81  100  121  144  169
  n=13: 1    1    1    1    1    1    1    1    1    1    1    1    1
  n=14: 1    2    3    4    5    6    7    8    9   10   11   12   13
  n=15: 1    2    3    4    5    6    7    8    9   10   11   12   13
  n=16: 1    5   14   30   55   91  140  204  285  385  506  650  819
  n=17: 1    1    1    1    1    1    1    1    1    1    1    1    1
  n=18: 1    4    9   16   25   36   49   64   81  100  121  144  169
The A(12,3) = 16 orderless factorizations of 12 with 2 levels of parentheses:
  ((2*2*3))          ((2*6))      ((3*4))      ((12))
  ((2)*(2*3))        ((2)*(6))    ((3)*(4))
  ((3)*(2*2))        ((2))*((6))  ((3))*((4))
  ((2))*((2*3))
  ((2)*(2)*(3))
  ((3))*((2*2))
  ((2))*((2)*(3))
  ((3))*((2)*(2))
  ((2))*((2))*((3))
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    lev[n_,k_]:=If[k==0,{n},Join@@Table[Union[Sort/@Tuples[lev[#,k-1]&/@fac]],{fac,facs[n]}]];
    Table[Length[lev[sum-k,k]],{sum,12},{k,0,sum-1}]

A330936 Number of nontrivial factorizations of n into factors > 1.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 3, 0, 2, 0, 2, 0, 0, 0, 5, 0, 0, 1, 2, 0, 3, 0, 5, 0, 0, 0, 7, 0, 0, 0, 5, 0, 3, 0, 2, 2, 0, 0, 10, 0, 2, 0, 2, 0, 5, 0, 5, 0, 0, 0, 9, 0, 0, 2, 9, 0, 3, 0, 2, 0, 3, 0, 14, 0, 0, 2, 2, 0, 3, 0, 10, 3, 0, 0, 9, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Jan 04 2020

Keywords

Comments

The trivial factorizations of a number are (1) the case with only one factor, and (2) the factorization into prime numbers.

Examples

			The a(n) nontrivial factorizations of n = 8, 12, 16, 24, 36, 48, 60, 72:
  (2*4)  (2*6)  (2*8)    (3*8)    (4*9)    (6*8)      (2*30)    (8*9)
         (3*4)  (4*4)    (4*6)    (6*6)    (2*24)     (3*20)    (2*36)
                (2*2*4)  (2*12)   (2*18)   (3*16)     (4*15)    (3*24)
                         (2*2*6)  (3*12)   (4*12)     (5*12)    (4*18)
                         (2*3*4)  (2*2*9)  (2*3*8)    (6*10)    (6*12)
                                  (2*3*6)  (2*4*6)    (2*5*6)   (2*4*9)
                                  (3*3*4)  (3*4*4)    (3*4*5)   (2*6*6)
                                           (2*2*12)   (2*2*15)  (3*3*8)
                                           (2*2*2*6)  (2*3*10)  (3*4*6)
                                           (2*2*3*4)            (2*2*18)
                                                                (2*3*12)
                                                                (2*2*2*9)
                                                                (2*2*3*6)
                                                                (2*3*3*4)
		

Crossrefs

Positions of nonzero terms are A033942.
Positions of 1's are A030078.
Positions of 2's are A054753.
Nontrivial integer partitions are A007042.
Nontrivial set partitions are A008827.
Nontrivial divisors are A070824.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[DeleteCases[Rest[facs[n]],{_}]],{n,100}]

Formula

For prime n, a(n) = 0; for nonprime n, a(n) = A001055(n) - 2.
Previous Showing 11-20 of 26 results. Next