A321468 Number of factorizations of n! into factors > 1 that can be obtained by taking the multiset union of a choice of factorizations of each positive integer from 2 to n into factors > 1.
1, 1, 1, 1, 2, 2, 4, 4, 10, 20, 40, 40, 116, 116, 232, 464, 1440, 1440, 4192, 4192, 11640, 23280, 46560, 46560, 157376
Offset: 0
Examples
The a(2) = 1 through a(8) = 10 factorizations: 2 2*3 2*3*4 2*3*4*5 2*3*4*5*6 2*3*4*5*6*7 2*3*4*5*6*7*8 2*2*2*3 2*2*2*3*5 2*2*2*3*5*6 2*2*2*3*5*6*7 2*2*2*3*5*6*7*8 2*2*3*3*4*5 2*2*3*3*4*5*7 2*2*3*3*4*5*7*8 2*2*2*2*3*3*5 2*2*2*2*3*3*5*7 2*2*3*4*4*5*6*7 2*2*2*2*3*3*5*7*8 2*2*2*2*3*4*5*6*7 2*2*2*3*3*4*4*5*7 2*2*2*2*2*2*3*5*6*7 2*2*2*2*2*3*3*4*5*7 2*2*2*2*2*2*2*3*3*5*7 For example, 2*2*2*2*2*2*3*5*6*7 = (2)*(3)*(2*2)*(5)*(6)*(7)*(2*2*2), so (2*2*2*2*2*2*3*5*6*7) is counted under a(8).
Crossrefs
Programs
-
Mathematica
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; Table[Length[Union[Sort/@Join@@@Tuples[facs/@Range[2,n]]]],{n,10}]
Comments