A332278
Number of widely totally co-strongly normal integer partitions of n.
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 2, 1, 1, 2, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2
Offset: 0
The a(1) = 1 through a(20) = 2 partitions:
1: (1)
2: (11)
3: (21),(111)
4: (211),(1111)
5: (11111)
6: (321),(111111)
7: (1111111)
8: (11111111)
9: (32211),(111111111)
10: (4321),(322111),(1111111111)
11: (11111111111)
12: (111111111111)
13: (1111111111111)
14: (11111111111111)
15: (54321),(111111111111111)
16: (1111111111111111)
17: (11111111111111111)
18: (111111111111111111)
19: (1111111111111111111)
20: (4332221111),(11111111111111111111)
Not requiring co-strength gives
A332277.
The strong version is
A332297(n) - 1 for n > 1.
The narrow version is a(n) - 1 for n > 1.
The alternating version is
A332289.
The Heinz numbers of these partitions are
A332293.
The case of compositions is
A332337.
Cf.
A000009,
A100883,
A107429,
A133808,
A181819,
A316496,
A317245,
A317491,
A329746,
A332279,
A332290,
A332291,
A332292,
A332296,
A332576.
-
totnQ[ptn_]:=Or[ptn=={},Union[ptn]=={1},And[Union[ptn]==Range[Max[ptn]],LessEqual@@Length/@Split[ptn],totnQ[Length/@Split[ptn]]]];
Table[Length[Select[IntegerPartitions[n],totnQ]],{n,0,30}]
A332296
Number of narrowly totally normal compositions of n.
Original entry on oeis.org
1, 1, 2, 4, 5, 7, 13, 23, 30, 63, 120, 209, 369, 651, 1198, 2174, 3896, 7023, 12699, 22941, 41565
Offset: 0
The a(0) = 1 through a(6) = 13 compositions:
() (1) (2) (3) (4) (5) (6)
(11) (12) (112) (122) (123)
(21) (121) (212) (132)
(111) (211) (221) (213)
(1111) (1121) (231)
(1211) (312)
(11111) (321)
(1212)
(1221)
(2112)
(2121)
(11211)
(111111)
For example, starting with the composition (1,1,2,3,1,1) and repeatedly taking run-lengths gives (1,1,2,3,1,1) -> (2,1,1,2) -> (1,2,1) -> (1,1,1) -> (3). The first four are normal and the last is a singleton, so (1,1,2,3,1,1) is counted under a(9).
The wide recursive version (for partitions) is
A332295.
The alternating version is
A332296 (this sequence).
The co-strong version is (also)
A332336.
Cf.
A001462,
A316496,
A317081,
A317245,
A317491,
A329744,
A332276,
A332277,
A332278,
A332297,
A332337,
A332340.
-
tinQ[q_]:=Or[Length[q]<=1,And[Union[q]==Range[Max[q]],tinQ[Length/@Split[q]]]];
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],tinQ]],{n,0,10}]
A332336
Number of narrowly totally strongly normal compositions of n.
Original entry on oeis.org
1, 1, 2, 4, 4, 4, 10, 10, 13, 24, 55, 78, 117, 206, 353, 698, 1175, 2014, 3539, 6210, 10831
Offset: 0
The a(1) = 1 through a(8) = 13 compositions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (12) (112) (212) (123) (1213) (1232)
(21) (121) (221) (132) (1231) (2123)
(111) (1111) (11111) (213) (1312) (2132)
(231) (1321) (2312)
(312) (2131) (2321)
(321) (3121) (3212)
(1212) (11221) (12131)
(2121) (12121) (13121)
(111111) (1111111) (21212)
(22112)
(111221)
(11111111)
For example, starting with (22112) and repeated taking run-lengths gives (22112) -> (221) -> (21) -> (11) -> (2). The first four are normal with weakly decreasing run-lengths, and the last is a singleton, so (22112) is counted under a(8).
The co-strong version is
A332336 (this sequence).
Cf.
A025487,
A316496,
A317081,
A317245,
A317256,
A317491,
A329744,
A332279,
A332291,
A332292,
A332338,
A332340.
-
tinQ[q_]:=Or[q=={},Length[q]==1,And[Union[q]==Range[Max[q]],GreaterEqual@@Length/@Split[q],tinQ[Length/@Split[q]]]];
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],tinQ]],{n,0,10}]
A332279
Number of widely totally normal compositions of n.
Original entry on oeis.org
1, 1, 1, 3, 4, 6, 12, 22, 29, 62, 119, 208, 368, 650, 1197, 2173, 3895, 7022, 12698, 22940, 41564
Offset: 0
The a(1) = 1 through a(7) = 22 compositions:
(1) (11) (12) (112) (122) (123) (1123)
(21) (121) (212) (132) (1132)
(111) (211) (221) (213) (1213)
(1111) (1121) (231) (1231)
(1211) (312) (1312)
(11111) (321) (1321)
(1212) (2113)
(1221) (2122)
(2112) (2131)
(2121) (2212)
(11211) (2311)
(111111) (3112)
(3121)
(3211)
(11221)
(12112)
(12121)
(12211)
(21121)
(111211)
(112111)
(1111111)
For example, starting with y = (3,2,1,1,2,2,2,1,2,1,1,1,1) and repeatedly taking run-lengths gives y -> (1,1,2,3,1,1,4) -> (2,1,1,2,1) -> (1,2,1,1) -> (1,1,2) -> (2,1) -> (1,1). These are all normal and the last is all 1's, so y is counted under a(20).
Constantly recursively normal partitions are
A332272.
The case of reversed partitions is (also)
A332277.
The co-strong version is (also)
A332337.
Cf.
A001462,
A181819,
A182850,
A317081,
A317245,
A317491,
A329744,
A332276,
A332289,
A332292,
A332295,
A332297,
A332336,
A332340.
-
recnQ[ptn_]:=Or[ptn=={},Union[ptn]=={1},And[Union[ptn]==Range[Max[ptn]],recnQ[Length/@Split[ptn]]]];
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],recnQ]],{n,0,10}]
A332295
Number of widely recursively normal integer partitions of n.
Original entry on oeis.org
1, 1, 2, 3, 4, 6, 6, 10, 12, 17, 21, 30, 34, 48, 54, 74, 86, 113, 132, 169, 200, 246, 293, 360, 422, 512, 599, 726, 840, 1009, 1181, 1401, 1631, 1940, 2240, 2636, 3069, 3567, 4141, 4846, 5556, 6470, 7505, 8627, 9936, 11523, 13176, 15151, 17430, 19935, 22846
Offset: 0
The a(1) = 1 through a(8) = 12 partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (21) (31) (32) (42) (43) (53)
(111) (211) (41) (51) (52) (62)
(1111) (221) (321) (61) (71)
(311) (411) (322) (332)
(11111) (111111) (331) (422)
(421) (431)
(511) (521)
(3211) (611)
(1111111) (3221)
(4211)
(11111111)
For example, starting with y = (4,3,2,2,1) and repeatedly taking run-lengths gives (4,3,2,2,1) -> (1,1,2,1) -> (2,1,1) -> (1,2) -> (1,1), all of which have normal run-lengths, so y is widely recursively normal. On the other hand, starting with y and repeatedly taking multiplicities gives (4,3,2,2,1) -> (2,1,1,1) -> (3,1), so y is not fully normal (A317491).
Starting with y = (5,4,3,3,2,2,2,1,1) and repeatedly taking run-lengths gives (5,4,3,3,2,2,2,1,1) -> (1,1,2,3,2) -> (2,1,1,1) -> (1,3), so y is not widely recursively normal. On the other hand, starting with y and repeatedly taking multiplicities gives (5,4,3,3,2,2,2,1,1) -> (3,2,2,1,1) -> (2,2,1) -> (2,1) -> (1,1), so y is fully normal (A317491).
Partitions with normal multiplicities are
A317081.
The Heinz numbers of these partitions are a proper superset of
A317492.
Accepting any constant sequence instead of just 1's gives
A332272.
The total (instead of recursive) version is
A332277.
The case of reversed partitions is this same sequence.
The alternating (instead of recursive) version is this same sequence.
-
recnQ[ptn_]:=Or[ptn=={},Union[ptn]=={1},And[Union[Length/@Split[ptn]]==Range[Max[Length/@Split[ptn]]],recnQ[Length/@Split[ptn]]]];
Table[Length[Select[IntegerPartitions[n],recnQ]],{n,0,30}]
A317588
Number of uniformly normal integer partitions of n.
Original entry on oeis.org
1, 1, 2, 3, 4, 3, 6, 3, 5, 6, 7, 5, 8, 5, 7, 10, 7, 6, 12, 7, 12, 14, 10, 11, 18, 11, 13, 16, 18, 15, 35, 16, 26, 24, 27, 26, 47, 33, 44, 48, 58, 48, 76, 63, 81, 79, 98, 94, 123, 109, 135, 131, 148, 140, 162, 149, 152, 162, 166, 175, 202, 191, 221, 232, 233
Offset: 1
The a(6) = 6 uniformly normal integer partitions are (6), (33), (321), (222), (2211), (111111). Missing from this list are (51), (42), (411), (3111), (21111).
The a(21) = 14 uniformly normal integer partitions (n = 21):
(n),
(777),
(654321),
(4443321), (3333333),
(44432211), (44333211), (44332221),
(4432221111), (4333221111), (4332222111),
(433322211),
(22222221111111),
(111111111111111111111).
-
uninrmQ[q_]:=Or[q=={}||Length[Union[q]]==1,And[Union[q]==Range[Max[q]],uninrmQ[Sort[Length/@Split[q],Greater]]]];
Table[Length[Select[IntegerPartitions[n],uninrmQ]],{n,0,30}]
A332272
Number of narrowly recursively normal integer partitions of n.
Original entry on oeis.org
1, 1, 2, 3, 5, 6, 8, 10, 14, 18, 23, 30, 37, 46, 52, 70, 80, 100, 116, 146, 171, 203, 236, 290, 332, 401, 458, 547, 626, 744, 851, 1004, 1157, 1353, 1553, 1821, 2110, 2434, 2810, 3250, 3741, 4304, 4949, 5661, 6510, 7450, 8501, 9657, 11078, 12506, 14329, 16185
Offset: 0
The a(6) = 8 partitions are (6), (51), (42), (411), (33), (321), (222), (111111). Missing from this list are (3111), (2211), (21111).
The a(1) = 1 through a(8) = 14 partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (21) (22) (32) (33) (43) (44)
(111) (31) (41) (42) (52) (53)
(211) (221) (51) (61) (62)
(1111) (311) (222) (322) (71)
(11111) (321) (331) (332)
(411) (421) (422)
(111111) (511) (431)
(3211) (521)
(1111111) (611)
(2222)
(3221)
(4211)
(11111111)
The strict instead of narrow version is
A330937.
The widely normal case is
A332277(n) - 1 for n > 1.
The wide version is
A332295(n) - 1.
Cf.
A000009,
A107429,
A181819,
A316496,
A317081,
A317245,
A317491,
A329744,
A329746,
A329766,
A332576.
-
normQ[m_]:=m=={}||Union[m]==Range[Max[m]];
recnQ[ptn_]:=With[{qtn=Length/@Split[ptn]},Or[Length[qtn]<=1,And[normQ[qtn],recnQ[qtn]]]];
Table[Length[Select[IntegerPartitions[n],recnQ]],{n,0,30}]
A332274
Number of totally strong compositions of n.
Original entry on oeis.org
1, 1, 2, 4, 7, 11, 22, 33, 56, 93, 162, 264, 454, 765, 1307, 2237, 3849, 6611, 11472, 19831, 34446, 59865, 104293, 181561, 316924
Offset: 0
The a(1) = 1 through a(5) = 11 compositions:
(1) (2) (3) (4) (5)
(11) (12) (13) (14)
(21) (22) (23)
(111) (31) (32)
(121) (41)
(211) (122)
(1111) (131)
(212)
(311)
(2111)
(11111)
The co-strong case is
A332274 (this sequence).
The case of reversed partitions is
A332275.
The alternating version is
A332338.
Cf.
A100883,
A107429,
A317245,
A317256,
A317491,
A329744,
A332272,
A332279,
A332289,
A332292,
A332336,
A332337,
A332339,
A332340.
-
tni[q_]:=Or[q=={},q=={1},And[GreaterEqual@@Length/@Split[q],tni[Length/@Split[q]]]];
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],tni]],{n,0,15}]
A332576
Number of integer partitions of n that are all 1's or whose run-lengths cover an initial interval of positive integers.
Original entry on oeis.org
1, 1, 2, 3, 4, 6, 6, 10, 12, 17, 21, 31, 35, 51, 59, 80, 97, 130, 153, 204, 244, 308, 376, 475, 564, 708, 851, 1043, 1247, 1533, 1816, 2216, 2633, 3174, 3766, 4526, 5324, 6376, 7520, 8917, 10479, 12415, 14524, 17134, 20035, 23489, 27423, 32091, 37286, 43512
Offset: 0
The a(1) = 1 through a(8) = 12 partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (21) (31) (32) (42) (43) (53)
(111) (211) (41) (51) (52) (62)
(1111) (221) (321) (61) (71)
(311) (411) (322) (332)
(11111) (111111) (331) (422)
(421) (431)
(511) (521)
(3211) (611)
(1111111) (3221)
(4211)
(11111111)
Heinz numbers of these partitions first differ from
A317492 in having 420.
Not counting constant-1 sequences gives
A317081.
-
nQ[ptn_]:=Or[ptn=={},Union[ptn]=={1},Union[Length/@Split[ptn]]==Range[Max[Length/@Split[ptn]]]];
Table[Length[Select[IntegerPartitions[n],nQ]],{n,0,30}]
A317493
Heinz numbers of integer partitions that are not fully normal.
Original entry on oeis.org
9, 24, 25, 27, 36, 40, 48, 49, 54, 56, 72, 80, 81, 88, 96, 100, 104, 108, 112, 120, 121, 125, 135, 136, 144, 152, 160, 162, 168, 169, 176, 184, 189, 192, 196, 200, 208, 216, 224, 225, 232, 240, 243, 248, 250, 264, 270, 272, 280, 288, 289, 296, 297, 304, 312
Offset: 1
Sequence of all integer partitions that are not fully normal begins: (22), (2111), (33), (222), (2211), (3111), (21111), (44), (2221), (4111), (22111), (31111), (2222), (5111), (211111), (3311).
Cf.
A055932,
A056239,
A181819,
A182850,
A296150,
A305733,
A317089,
A317090,
A317245,
A317246,
A317491,
A317492.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
fulnrmQ[ptn_]:=With[{qtn=Sort[Length/@Split[ptn],Greater]},Or[ptn=={}||Union[ptn]=={1},And[Union[qtn]==Range[Max[qtn]],fulnrmQ[qtn]]]];
Select[Range[100],!fulnrmQ[Reverse[primeMS[#]]]&]
Comments