cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A319269 Number of uniform factorizations of n into factors > 1, where a factorization is uniform if all factors appear with the same multiplicity.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 2, 4, 1, 3, 1, 3, 2, 2, 1, 5, 2, 2, 3, 3, 1, 5, 1, 4, 2, 2, 2, 7, 1, 2, 2, 5, 1, 5, 1, 3, 3, 2, 1, 7, 2, 3, 2, 3, 1, 5, 2, 5, 2, 2, 1, 9, 1, 2, 3, 8, 2, 5, 1, 3, 2, 5, 1, 9, 1, 2, 3, 3, 2, 5, 1, 7, 4, 2, 1, 9, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Sep 16 2018

Keywords

Examples

			The a(144) = 17 factorizations:
  (144),
  (2*72), (3*48), (4*36), (6*24), (8*18), (9*16), (12*12),
  (2*3*24), (2*4*18), (2*6*12), (2*8*9), (3*4*12), (3*6*8),
  (2*2*6*6), (2*3*4*6), (3*3*4*4).
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],SameQ@@Length/@Split[#]&]],{n,100}]

Formula

a(n) = Sum_{d|A052409(n)} A045778(n^(1/d)).

A306203 Matula-Goebel numbers of balanced rooted semi-identity trees.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 11, 16, 17, 19, 21, 31, 32, 53, 57, 59, 64, 67, 73, 85, 127, 128, 131, 133, 159, 241, 256, 269, 277, 311, 331, 335, 365, 367, 371, 393, 399, 439, 512, 649, 709, 719, 739, 751, 917, 933, 937, 1007, 1024, 1113, 1139, 1205, 1241, 1345, 1523
Offset: 1

Views

Author

Gus Wiseman, Jan 29 2019

Keywords

Comments

A rooted tree is a semi-identity tree if the non-leaf branches of the root are all distinct and are themselves semi-identity trees. It is balanced if all leaves are the same distance from the root. The only balanced rooted identity trees are rooted paths.

Examples

			The sequence of all unlabeled balanced rooted semi-identity trees together with their Matula-Goebel numbers begins:
   1: o
   2: (o)
   3: ((o))
   4: (oo)
   5: (((o)))
   7: ((oo))
   8: (ooo)
  11: ((((o))))
  16: (oooo)
  17: (((oo)))
  19: ((ooo))
  21: ((o)(oo))
  31: (((((o)))))
  32: (ooooo)
  53: ((oooo))
  57: ((o)(ooo))
  59: ((((oo))))
  64: (oooooo)
  67: (((ooo)))
  73: (((o)(oo)))
  85: (((o))((oo)))
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    psidQ[n_]:=And[UnsameQ@@DeleteCases[primeMS[n],1],And@@psidQ/@primeMS[n]];
    mgtree[n_]:=If[n==1,{},mgtree/@primeMS[n]];
    Select[Range[100],And[psidQ[#],SameQ@@Length/@Position[mgtree[#],{}]]&]

A317719 Numbers that are not powerful tree numbers.

Original entry on oeis.org

6, 10, 12, 13, 14, 15, 18, 20, 21, 22, 24, 26, 28, 29, 30, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 82, 84, 85, 86, 87, 88, 89, 90, 91
Offset: 1

Views

Author

Gus Wiseman, Aug 05 2018

Keywords

Comments

A positive integer n is a powerful tree number iff either n = 1 or n is a prime number whose prime index is a powerful tree number, or n is a powerful number (meaning its prime multiplicities are all greater than 1) whose prime indices are all powerful tree numbers. A prime index of n is a number m such that prime(m) divides n.

Examples

			The sequence of numbers that are not powerful tree numbers together with their Matula-Goebel trees begins:
   6: (o(o))
  10: (o((o)))
  12: (oo(o))
  13: ((o(o)))
  14: (o(oo))
  15: ((o)((o)))
  18: (o(o)(o))
  20: (oo((o)))
  21: ((o)(oo))
  22: (o(((o))))
  24: (ooo(o))
  26: (o(o(o)))
  28: (oo(oo))
  29: ((o((o))))
  30: (o(o)((o)))
		

Crossrefs

Programs

  • Mathematica
    powgoQ[n_]:=Or[n==1,If[PrimeQ[n],powgoQ[PrimePi[n]],And[Min@@FactorInteger[n][[All,2]]>1,And@@powgoQ/@PrimePi/@FactorInteger[n][[All,1]]]]];
    Select[Range[100],!powgoQ[#]&]

A318691 Number of series-reduced powerful uniform rooted trees with n nodes.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 2, 1, 3, 2, 3, 1, 6, 1, 5, 4, 8, 1, 11, 1, 15, 6, 13, 1, 26, 3, 24, 9, 36, 1, 50, 1, 58, 14, 67, 7, 107, 1, 105, 25, 160, 1, 213, 1, 245, 45, 291, 1, 443, 5, 492, 68, 644, 1, 851, 15, 1019, 106, 1263, 1, 1785, 1, 1986, 189, 2592, 26, 3426, 1, 4071, 292
Offset: 1

Views

Author

Gus Wiseman, Aug 31 2018

Keywords

Comments

A series-reduced powerful uniform rooted tree with n nodes is a powerful uniform multiset (all multiplicities are equal to the same number > 1) of series-reduced powerful uniform rooted trees with a total of n-1 nodes.

Examples

			The a(19) = 11 series-reduced powerful uniform rooted trees with 19 nodes:
  (((ooo)(ooo))((ooo)(ooo)))
  ((oo(oo)(oo))(oo(oo)(oo)))
  ((oo)(oo)(oo)(oo)(oo)(oo))
  ((oo)(oo)(ooooo)(ooooo))
  ((ooo)(ooo)(oooo)(oooo))
  (oo(oo)(oo)(oooo)(oooo))
  ((ooooo)(ooooo)(ooooo))
  (ooo(oooo)(oooo)(oooo))
  ((oooooooo)(oooooooo))
  (oo(ooooooo)(ooooooo))
  (oooooooooooooooooo)
		

Crossrefs

Programs

  • Mathematica
    rurt[n_]:=If[n==1,{{}},Join@@Table[Select[Union[Sort/@Tuples[rurt/@ptn]],And[Min@@Length/@Split[#]>=2,SameQ@@Length/@Split[#]]&],{ptn,IntegerPartitions[n-1]}]];
    Table[Length[rurt[n]],{n,10}]
  • PARI
    WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)}
    seq(n)={my(v=vector(n)); v[1]=1; for(n=1, n-1, my(u=WeighT(v[1..n])); v[n+1] = sumdiv(n,d,u[d]) - u[n]); v} \\ Andrew Howroyd, Dec 09 2020

Formula

a(p+1) = 1 for prime p. - Andrew Howroyd, Dec 09 2020

Extensions

Terms a(51) and beyond from Andrew Howroyd, Dec 09 2020

A318689 Number of powerful uniform rooted trees with n nodes.

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 11, 12, 19, 23, 35, 36, 63, 64, 98, 112, 173, 174, 291, 292, 473, 509, 791, 792, 1345, 1356, 2158, 2257, 3634, 3635, 6053, 6054, 9807, 10091, 16173, 16216, 26783, 26784, 43076, 43880, 70631, 70632, 114975, 114976, 184665, 186996, 298644, 298645, 481978, 482011
Offset: 1

Views

Author

Gus Wiseman, Aug 31 2018

Keywords

Comments

A powerful uniform rooted tree with n nodes is either a single powerful uniform branch with n-1 nodes, or a powerful uniform multiset (all multiplicities are equal to the same number > 1) of powerful uniform rooted trees with a total of n-1 nodes.

Examples

			The a(8) = 12 powerful uniform rooted trees:
  (((((((o)))))))
  ((((((oo))))))
  (((((o)(o)))))
  ((((o))((o))))
  (((((ooo)))))
  (((o)(o)(o)))
  ((((oooo))))
  (((oo)(oo)))
  ((oo(o)(o)))
  (((ooooo)))
  ((oooooo))
  (ooooooo)
		

Crossrefs

Programs

  • Mathematica
    rurt[n_]:=If[n==1,{{}},Join@@Table[Select[Union[Sort/@Tuples[rurt/@ptn]],Or[Length[#]==1,And[Min@@Length/@Split[#]>=2,SameQ@@Length/@Split[#]]]&],{ptn,IntegerPartitions[n-1]}]];
    Table[Length[rurt[n]],{n,15}]
  • PARI
    WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)}
    seq(n)={my(v=vector(n)); v[1]=1; for(n=1, n-1, my(u=WeighT(v[1..n])); v[n+1] = sumdiv(n,d,u[d]) - u[n] + v[n]); v} \\ Andrew Howroyd, Dec 09 2020

Extensions

Terms a(21) and beyond from Andrew Howroyd, Dec 09 2020

A318690 Matula-Goebel numbers of powerful uniform rooted trees.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 16, 17, 19, 23, 25, 27, 31, 32, 36, 49, 53, 59, 64, 67, 81, 83, 97, 100, 103, 121, 125, 127, 128, 131, 151, 196, 216, 225, 227, 241, 243, 256, 277, 289, 311, 331, 343, 361, 419, 431, 441, 484, 509, 512, 529, 541, 563, 625, 661, 691
Offset: 1

Views

Author

Gus Wiseman, Aug 31 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. A positive integer n is a Matula-Goebel number of a powerful uniform rooted tree iff either n = 1 or n is a prime number whose prime index is a Matula-Goebel number of a powerful uniform rooted tree or n is a squarefree number taken to a power > 1 whose prime indices are all Matula-Goebel numbers of powerful uniform rooted trees.

Examples

			The sequence of all powerful uniform rooted trees together with their Matula-Goebel numbers begins:
   1: o
   2: (o)
   3: ((o))
   4: (oo)
   5: (((o)))
   7: ((oo))
   8: (ooo)
   9: ((o)(o))
  11: ((((o))))
  16: (oooo)
  17: (((oo)))
  19: ((ooo))
  23: (((o)(o)))
  25: (((o))((o)))
  27: ((o)(o)(o))
  31: (((((o)))))
  32: (ooooo)
  36: (oo(o)(o))
  49: ((oo)(oo))
		

Crossrefs

Programs

  • Mathematica
    powunQ[n_]:=Or[n==1,If[PrimeQ[n],powunQ[PrimePi[n]],And[SameQ@@FactorInteger[n][[All,2]],Min@@FactorInteger[n][[All,2]]>1,And@@powunQ/@PrimePi/@FactorInteger[n][[All,1]]]]];
    Select[Range[100],powunQ]

A318692 Matula-Goebel numbers of series-reduced powerful uniform rooted trees.

Original entry on oeis.org

1, 4, 8, 16, 32, 49, 64, 128, 196, 256, 343, 361, 512, 1024, 1444, 2048, 2401, 2744, 2809, 4096, 6859, 8192, 11236, 16384, 16807, 17161, 17689, 32768, 38416, 51529, 54872, 65536, 68644, 70756, 96721, 117649, 130321, 131072, 137641, 148877, 206116, 262144
Offset: 1

Views

Author

Gus Wiseman, Aug 31 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. A positive integer n is a Matula-Goebel number of a series-reduced powerful uniform rooted tree iff either n = 1 or n is a squarefree number, whose prime indices are all Matula-Goebel numbers of series-reduced powerful uniform rooted trees, taken to a power > 1.

Examples

			The sequence of all series-reduced powerful uniform rooted trees together with their Matula-Goebel numbers begins:
    1: o
    4: (oo)
    8: (ooo)
   16: (oooo)
   32: (ooooo)
   49: ((oo)(oo))
   64: (oooooo)
  128: (ooooooo)
  196: (oo(oo)(oo))
  256: (oooooooo)
  343: ((oo)(oo)(oo))
  361: ((ooo)(ooo))
  512: (ooooooooo)
		

Crossrefs

Programs

  • Mathematica
    srpowunQ[n_]:=Or[n==1,And[SameQ@@FactorInteger[n][[All,2]],Min@@FactorInteger[n][[All,2]]>1,And@@srpowunQ/@PrimePi/@FactorInteger[n][[All,1]]]];
    Select[Range[100000],srpowunQ]

A317720 Numbers that are not uniform relatively prime tree numbers.

Original entry on oeis.org

9, 12, 18, 20, 21, 23, 24, 25, 27, 28, 37, 39, 40, 44, 45, 46, 48, 49, 50, 52, 54, 56, 57, 60, 61, 63, 65, 68, 69, 71, 72, 73, 74, 75, 76, 80, 81, 83, 84, 87, 88, 89, 90, 91, 92, 96, 97, 98, 99, 103, 104, 107, 108, 111, 112, 115, 116, 117, 120, 121, 122, 124
Offset: 1

Views

Author

Gus Wiseman, Aug 05 2018

Keywords

Comments

A positive integer n is a uniform relatively prime tree number iff either n = 1 or n is a prime number whose prime index is a uniform relatively prime tree number, or n is a power of a squarefree number whose prime indices are relatively prime and are themselves uniform relatively prime tree numbers. A prime index of n is a number m such that prime(m) divides n.

Examples

			The sequence of non-uniform tree numbers together with their Matula-Goebel trees begins:
   9: ((o)(o))
  12: (oo(o))
  18: (o(o)(o))
  20: (oo((o)))
  21: ((o)(oo))
  23: (((o)(o)))
  24: (ooo(o))
  25: (((o))((o)))
  27: ((o)(o)(o))
  28: (oo(oo))
  37: ((oo(o)))
  39: ((o)(o(o)))
  40: (ooo((o)))
  44: (oo(((o))))
  45: ((o)(o)((o)))
		

Crossrefs

Programs

  • Mathematica
    rupQ[n_]:=Or[n==1,If[PrimeQ[n],rupQ[PrimePi[n]],And[SameQ@@FactorInteger[n][[All,2]],GCD@@PrimePi/@FactorInteger[n][[All,1]]==1,And@@rupQ/@PrimePi/@FactorInteger[n][[All,1]]]]];
    Select[Range[200],!rupQ[#]&]
Previous Showing 11-18 of 18 results.