A363526
Number of integer partitions of n with reverse-weighted sum 3*n.
Original entry on oeis.org
1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 4, 3, 2, 4, 4, 4, 5, 5, 4, 7, 7, 5, 8, 7, 6, 11, 9, 8, 11, 10, 10, 13, 12, 11, 15, 15, 12, 17, 16, 14, 20, 18, 16, 22, 20, 19, 24, 22, 20, 27, 26, 23, 29, 27, 25, 33, 30, 28, 35, 33, 31, 38, 36, 33, 41, 40
Offset: 0
The partition (6,4,4,1) has sum 15 and reverse-weighted sum 45 so is counted under a(15).
The a(n) partitions for n = {5, 10, 15, 16, 21, 24}:
(1,1,1,1,1) (4,3,2,1) (6,4,4,1) (6,5,4,1) (8,6,6,1) (9,7,7,1)
(2,2,2,2,2) (6,5,2,2) (6,6,2,2) (8,7,4,2) (9,8,5,2)
(7,3,3,2) (7,4,3,2) (9,5,5,2) (9,9,3,3)
(3,3,3,3,3) (9,6,3,3) (10,6,6,2)
(10,4,4,3) (10,7,4,3)
(11,5,5,3)
(12,4,4,4)
Positions of terms with omega > 4 appear to be
A079998.
The version for compositions is
A231429.
The non-reverse version is
A363527.
A318283 gives weighted sum of reversed prime indices, row-sums of
A358136.
Cf.
A000016,
A008284,
A067538,
A222855,
A222970,
A359755,
A360672,
A360675,
A362559,
A362560,
A363525,
A363528.
-
Table[Length[Select[IntegerPartitions[n],Total[Accumulate[#]]==3n&]],{n,0,30}]
A318371
Number of non-isomorphic strict set multipartitions (sets of sets) of a multiset whose multiplicities are the prime indices of n.
Original entry on oeis.org
1, 1, 0, 2, 0, 1, 0, 3, 1, 0, 0, 3, 0, 0, 0, 5, 0, 4, 0, 1, 0, 0, 0, 6, 0, 0, 4, 0, 0, 2
Offset: 1
Non-isomorphic representatives of the a(24) = 6 strict set multipartitions of {1,1,2,3,4}:
{{1},{1,2,3,4}}
{{1,2},{1,3,4}}
{{1},{2},{1,3,4}}
{{1},{1,2},{3,4}}
{{2},{1,3},{1,4}}
{{1},{2},{3},{1,4}}
A318560
Number of combinatory separations of a multiset whose multiplicities are the prime indices of n in weakly decreasing order.
Original entry on oeis.org
1, 1, 2, 2, 3, 4, 5, 3, 8, 7, 7, 8, 11, 12, 15, 5, 15, 17, 22, 14, 27, 19, 30, 13, 27, 30, 33, 26, 42, 37, 56, 7, 44, 45, 51, 34, 77, 67, 72, 25
Offset: 1
The a(18) = 17 combinatory separations of {1,1,2,2,3}:
{11223}
{1,1122} {1,1123} {1,1223} {11,112} {12,112} {12,122} {12,123}
{1,1,112} {1,1,122} {1,1,123} {1,11,11} {1,11,12} {1,12,12}
{1,1,1,11} {1,1,1,12}
{1,1,1,1,1}
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
normize[m_]:=m/.Rule@@@Table[{Union[m][[i]],i},{i,Length[Union[m]]}];
Table[Length[Union[Sort/@Map[normize,mps[nrmptn[n]],{2}]]],{n,20}]
A363527
Number of integer partitions of n with weighted sum 3*n.
Original entry on oeis.org
1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 3, 4, 4, 6, 8, 7, 10, 13, 13, 21, 25, 24, 37, 39, 40, 58, 63, 72, 94, 106, 118, 144, 165, 181, 224, 256, 277, 341, 387, 417, 504, 560, 615, 743, 818, 899, 1066, 1171, 1285, 1502, 1655, 1819, 2108, 2315, 2547, 2915
Offset: 0
The partition (2,2,1,1,1,1) has sum 8 and weighted sum 24 so is counted under a(8).
The a(13) = 1 through a(18) = 8 partitions:
(332221) (333221) (33333) (442222) (443222) (443331)
(4322111) (522222) (5322211) (4433111) (444222)
(71111111) (4332111) (55111111) (5332211) (533322)
(63111111) (63211111) (55211111) (4443111)
(63311111) (7222221)
(72221111) (55311111)
(64221111)
(A11111111)
The version for compositions is
A231429.
These partitions have ranks
A363531.
A318283 gives weighted sum of reversed prime indices, row-sums of
A358136.
Cf.
A000016,
A008284,
A067538,
A222855,
A222970,
A359755,
A360672,
A360675,
A362559,
A362560,
A363525,
A363528,
A363532.
-
Table[Length[Select[IntegerPartitions[n],Total[Accumulate[Reverse[#]]]==3n&]],{n,0,30}]
A363530
Heinz numbers of integer partitions such that 3*(sum) = (weighted sum).
Original entry on oeis.org
1, 32, 40, 60, 100, 126, 210, 243, 294, 351, 550, 585, 770, 819, 1210, 1274, 1275, 1287, 1521, 1785, 2002, 2366, 2793, 2805, 2875, 3125, 3315, 4025, 4114, 4335, 4389, 4862, 5187, 6325, 6358, 6422, 6783, 7105, 7475, 7581, 8349, 8398, 9386, 9775, 9867, 10925
Offset: 1
The terms together with their prime indices begin:
1: {}
32: {1,1,1,1,1}
40: {1,1,1,3}
60: {1,1,2,3}
100: {1,1,3,3}
126: {1,2,2,4}
210: {1,2,3,4}
243: {2,2,2,2,2}
294: {1,2,4,4}
351: {2,2,2,6}
550: {1,3,3,5}
585: {2,2,3,6}
770: {1,3,4,5}
819: {2,2,4,6}
These partitions are counted by
A363527.
A053632 counts compositions by weighted sum.
A318283 gives weighted sum of reversed prime indices, row-sums of
A358136.
Cf.
A000041,
A000720,
A001221,
A046660,
A106529,
A118914,
A124010,
A181819,
A215366,
A359362,
A359755.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[1000],3*Total[prix[#]]==Total[Accumulate[Reverse[prix[#]]]]&]
A358102
Numbers of the form prime(w)*prime(x)*prime(y) with w >= x >= y such that 2w = 3x + 4y.
Original entry on oeis.org
66, 153, 266, 609, 806, 1295, 1599, 1634, 2107, 3021, 3055, 3422, 5254, 5369, 5795, 5829, 7138, 8769, 9443, 9581, 10585, 10706, 12337, 12513, 13298, 16465, 16511, 16849, 17013, 18602, 21983, 22145, 23241, 23542, 26159, 29014, 29607, 29945, 30943, 32623, 32809
Offset: 1
The terms together with their prime indices begin:
66: {1,2,5}
153: {2,2,7}
266: {1,4,8}
609: {2,4,10}
806: {1,6,11}
1295: {3,4,12}
1599: {2,6,13}
1634: {1,8,14}
2107: {4,4,14}
3021: {2,8,16}
3055: {3,6,15}
3422: {1,10,17}
5254: {1,12,20}
5369: {4,6,17}
5795: {3,8,18}
5829: {2,10,19}
7138: {1,14,23}
8769: {2,12,22}
These partitions are counted by
A357849.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[1000],PrimeOmega[#]==3&&2*primeMS[#][[-1]]==3*primeMS[#][[-2]]+4*primeMS[#][[-3]]&]
A359397
Squarefree numbers with weakly decreasing first differences of 0-prepended prime indices.
Original entry on oeis.org
1, 2, 3, 5, 6, 7, 11, 13, 15, 17, 19, 21, 23, 29, 30, 31, 35, 37, 41, 43, 47, 53, 55, 59, 61, 65, 67, 71, 73, 77, 79, 83, 89, 91, 97, 101, 103, 105, 107, 109, 113, 119, 127, 131, 133, 137, 139, 143, 149, 151, 157, 163, 167, 173, 179, 181, 187, 191, 193, 197
Offset: 1
715 has prime indices {3,5,6}, with first differences (2,1), which are weakly decreasing, so 715 is in the sequence.
This is the squarefree case of
A325362.
These are the sorted Heinz numbers of rows of
A359361.
A355536 lists first differences of prime indices, 0-prepended
A287352.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],SquareFreeQ[#]&&GreaterEqual@@Differences[Prepend[primeMS[#],0]]&]
A363525
Number of integer partitions of n with weighted sum divisible by reverse-weighted sum.
Original entry on oeis.org
1, 2, 2, 3, 2, 4, 2, 4, 5, 5, 3, 10, 4, 7, 13, 10, 8, 29, 10, 18, 39, 20, 20, 70, 29, 40, 105, 65, 55, 166, 73, 132, 242, 141, 129, 476, 183, 248, 580, 487, 312, 984, 422, 868, 1345, 825, 724, 2709, 949, 1505, 2756, 2902, 1611, 4664, 2289, 4942, 5828, 4278
Offset: 1
The partition (6,5,4,3,2,1,1,1,1) has weighted sum 80, reverse 160, so is counted under a(24).
The a(n) partitions for n = 1, 2, 4, 6, 9, 12, 14 (A..E = 10-14):
1 2 4 6 9 C E
11 22 33 333 66 77
1111 222 711 444 65111
111111 6111 921 73211
111111111 3333 2222222
7311 71111111
63111 11111111111111
222222
621111
111111111111
The case of equality (and reciprocal version) is
A000005.
A318283 gives weighted sum of reversed prime indices, row-sums of
A358136.
Cf.
A000016,
A008284,
A067538,
A222855,
A222970,
A358137,
A359755,
A362558,
A362559,
A362560,
A363527.
-
Table[Length[Select[IntegerPartitions[n], Divisible[Total[Accumulate[#]], Total[Accumulate[Reverse[#]]]]&]],{n,30}]
A363528
Number of strict integer partitions of n with weighted sum divisible by reverse-weighted sum.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 3, 1, 2, 6, 2, 3, 9, 3, 4, 11, 4, 5, 16, 6, 8, 24, 8, 10, 31, 11, 14, 41, 18, 18, 59, 21, 27, 74, 30, 32, 100, 35, 43, 128, 54, 53, 173, 58, 78, 215, 81, 88, 294, 97, 123, 362, 150, 146, 469, 162, 221, 577
Offset: 1
The a(n) partitions for n = 1, 12, 15, 21, 24, 26:
(1) (12) (15) (21) (24) (26)
(9,2,1) (11,3,1) (15,5,1) (17,6,1) (11,8,4,2,1)
(9,3,2,1) (16,3,2) (18,4,2) (12,6,5,2,1)
(11,7,2,1) (12,9,2,1) (13,5,4,3,1)
(12,5,3,1) (13,7,3,1)
(10,5,3,2,1) (14,5,4,1)
(15,4,3,2)
(10,8,3,2,1)
(11,6,4,2,1)
A318283 gives weighted sum of reversed prime indices, row-sums of
A358136.
Cf.
A008284,
A053632,
A067538,
A222855,
A222970,
A358137,
A359754,
A359755,
A362558,
A362559,
A362560.
-
Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&Divisible[Total[Accumulate[#]],Total[Accumulate[Reverse[#]]]]&]],{n,30}]
A359757
Greatest positive integer whose weakly increasing prime indices have zero-based weighted sum (A359674) equal to n.
Original entry on oeis.org
4, 9, 25, 49, 121, 169, 289, 361, 529, 841, 961, 1369, 1681, 1849, 2209, 2809, 3481, 3721, 4489, 5041, 5329, 6241, 6889, 7921, 9409, 10201, 12167, 11449, 15341, 24389, 16399, 26071, 29791, 31117, 35557, 50653, 39401, 56129, 68921, 58867, 72283, 83521, 79007, 86903, 103823
Offset: 1
The terms together with their prime indices begin:
4: {1,1}
9: {2,2}
25: {3,3}
49: {4,4}
121: {5,5}
169: {6,6}
289: {7,7}
361: {8,8}
529: {9,9}
841: {10,10}
A053632 counts compositions by zero-based weighted sum.
A124757 = zero-based weighted sum of standard compositions, reverse
A231204.
-
nn=10;
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
wts[y_]:=Sum[(i-1)*y[[i]],{i,Length[y]}];
seq=Table[wts[prix[n]],{n,2^nn}];
Table[Position[seq,k][[-1,1]],{k,nn}]
-
a(n)={ my(recurse(r, k, m) = if(k==1, if(m>=r, prime(r)^2),
my(z=0); for(j=1, min(m, (r-k*(k-1)/2)\k), z=max(z, self()(r-k*j, k-1, j)*prime(j))); z));
vecmax(vector((sqrtint(8*n+1)-1)\2, k, recurse(n,k,n)));
} \\ Andrew Howroyd, Jan 21 2023
Comments